Проблемы и задачи надежности ЛК. Основные понятия проблемы и задачи надежности ТС справедливы и для лазерных комплексов ЛК. Экспериментальное определение показателей надежности ЛК во много раз сложнее чем измерение или определение большинства технических параметров. Наука о надежности изучает изменение показателей качества изделий под влиянием тех причин которые приводят к абсолютным изменениям их свойств.


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


Лекция 1. Введение в надежность технических систем (ТС). Проблемы и задачи надежности ЛК.

К техническим системам (ТС) относятся технические объекты (изделия, машины, технические комплексы) военного и гражданского назначения. Основные понятия, проблемы и задачи надежности ТС справедливы и для лазерных комплексов (ЛК).

В соответствии с современной теорией надёжности надежность ЛК – это свойство сохранять во времени свою работоспособность, то есть состояние, при котором комплекс способен выполнять заданные функции, сохраняя значения заданных параметров (технических характеристик) в пределах, установленных нормативно-технической документацией.

Событие, которое заключается в нарушении работоспособности, т.е. переходе ЛК в неработоспособное состояние, называется отказом. Отказом ЛК является не только немедленное прекращение функционирования, но и недопустимое снижение технических характеристик, определяющих эффективность выполнения поставленной задачи .

Различные отказы имеют и разные последствия: от незначительных отклонений в работе до аварийных ситуаций.

Области работоспособности ЛК подразделяют на действительную область, которая определяет требуемую работоспособность изделия, и назначенную область, которая диктуется требованиями технических условий к отдельным параметрам.

Работоспособность зависит он наработки - объема работы, который может оцениваться в календарных часах, количестве циклов, количестве импульсов, километрах пробега, времени хранения и т.д .

Измерение времени в календарных часах характерно для таких причин нарушения работоспособности изделия, как коррозия, действие внешних температурных факторов и облучение.

Время работы до отказа является случайной величиной .

Если продолжительность работы изделия регламентируется и является детерминированной величиной, то оно называется установленным ресурсом.

Ресурс – это наработка до предельного состояния, оговоренного в технической документации.

Срок службы – это календарная продолжительность эксплуатации ЛК до предельного состояния с учетом перерывов на техническое обслуживание и ремонт.

Надежность, являясь одним из основных свойств, характеризующих качество работы комплекса, сама также характеризуется рядом свойств, основные из которых - безотказность, долговечность, ремонтопригодность и сохраняемость.

Безотказность - свойство непрерывно сохранять работоспособное состояние в течение определенной наработки без учета вынужденных перерывов.

Долговечность – свойство ЛК сохранять работоспособность до предельного состояния с необходимыми перерывами для технического обслуживания и ремонтов.

Предельное состояние – это такое состояние, при котором дальнейшее применение ЛК по целевому назначению недопустимо из-за требования безопасности или низкой эффективности, в том числе экономической.

Следует отметить, что долговечность и безотказность неидентичные понятия, они определяют разные стороны одного явления. ЛК может обладать высокой безотказностью и вместе с тем иметь низкую долговечность.

Ремонтопригодность - свойство ЛК, заключающееся в его приспособленности к предупреждению, обнаружению и устранению отказов и неисправностей проведением технического обслуживания и ремонтов .

Цель профилактического обслуживания - предупреждение появления неисправности или ненормальных условий работы с помощью таких профилактических способов, как настройка или регулировка, смазка, чистка и внесение некоторых исправлений. Профилактическое обслуживание может также включать в себя замену узлов или элементов, работающих на пределе своих возможностей.

Сохраняемость - свойство ЛК сохранять работоспособное состояние в процессе его хранения.

Таким образом, надежность ЛК - весьма специфическое свойство, зависящее от большого числа различных переменных факторов, многие из которых случайны и трудно поддаются оценке одним числовым показателем. Экспериментальное определение показателей надежности ЛК во много раз сложнее, чем измерение или определение большинства технических параметров.

Надежность, которая характеризует изменение показателей качества во времени, является как бы «динамикой качества», его разверткой во времени. Отсюда, надежность - это свойство изделия сохранять требуемые показатели качества в течение всего периода его использования.

Наука о надежности изучает изменение показателей качества изделий под влиянием тех причин, которые приводят к абсолютным изменениям их свойств.

Надежность изделия является одним из основных показателей его качества .

Стремление обеспечить высокий уровень качества и надежности является основной движущей силой при создании новых и эксплуатации существующих изделий .

Основные свойства надежности (безотказность, долговечность, ремонтопригодность и сохраняемость) должны обеспечиваться на всех этапах жизненного цикла ЛК.

При проектировании ЛК устанавливаются и обосновываются необходимые требования к надежности, которые должны обеспечиваться за счет принимаемых рациональных схемных и конструктивных решений. На этой стадии разрабатываются методы защиты от различных вредных воздействий, рассматриваются возможности автоматически восстанавливать утраченную работоспособность, оценивается приспособленность к ремонту и техническому обслуживанию.

При изготовлении (производстве) обеспечивается и контролируется надежность ЛК, зависящая от качества изготовления деталей, методов контроля выпускаемой продукции, возможностей управления ходом технологического процесса, от качества сборки, методов испытания и доводки и других показателей технологического процесса.

При эксплуатации ЛК реализуется его надежность. При этом, она зависит от режимов и условий эксплуатации, принятой системы ремонта, технологии технического обслуживания и других эксплуатационных факторов.

Методы повышения качества и надежности ТС, имея общую для всех технических систем направленность, обладают, как правило, теми или иными специфическими особенностями в зависимости от конструкции, назначения и технических требований, которые предъявляются к конкретному образцу.

В табл. 1.1 приведена классификация технических систем (машин) по их назначению. В ней указаны основные требования к техническим характеристикам ТС различного назначения.

Таблица 1.1.

Уровень надежности должен быть таким, чтобы при использовании ТС в любых, оговоренных техническими условиями (ТУ) ситуациях не возникали отказы, т.е. не нарушалась работоспособность. Кроме того, во многих случаях желательно, чтобы имелся запас надежности для повышения сопротивляемости экстремальным воздействиям, когда техническая система попадает в условия, не предусмотренные ТУ.

Кроме того, запас надежности необходим для обеспечения работоспособности в условиях износа, который приводит к постепенному ухудшению технических характеристик. Поэтому, чем выше запас надежности, тем дольше при прочих равных условиях, ТС будет находиться в работоспособном состоянии.

Недостаточный уровень надежности ТС (как новой, так и «изношенной») может привести к различным последствиям при нарушении её работоспособности, основными из которых являются:

1.- катастрофический отказ , связанный с гибелью людей (в результате авиационных или других катастроф), отказы военной техники в ответственные моменты, необратимые разрушения окружающей среды. Достаточно вспомнить такие трагические события, как авария на Чернобыльской атомной электростанции или гибель космического корабля «Челленджер». В мире постоянно происходят многочисленные аварии и катастрофы.

Например, статистика показывает, что ежегодно в мире происходит около 1200 крупных аварий на судах. На дне мирового океана после аварий находится более 50 ядерных боеголовок и более 10 ядерных реакторов.

2. -отказ, из-за которго ТС перестает функционировать в результате выхода из строя того или иного агрегата (элемента), что приводит к существенным экономическим потерям;

3.- снижение эффективности работы, когда ТС способна функционировать, но с меньшими КПД, производительностью, мощностью, точностью и другими техническими характеристиками, которые были достигнуты для нового изделия.

Поведение ТС с позиций надежности связано с изменением во времени тех ее «выходных» параметров, которые характеризуют целевое назначение и качество.

Оценка параметрической надежности ТС и анализ причин и последствий изменения ее технических характеристик в процессе длительной эксплуатации является фундаментом всей проблемы надежности.

Огромные средства затрачиваются в мире для того, чтобы машинный парк находился в работоспособном состоянии. Создание ремонтных предприятий и заводов по изготовлению запасных частей, применение многоцелевых служб по ремонту и техническому обслуживанию машин, включая системы информации, транспортировки и снабжения, - все это является следствием того, что машины теряют свою работоспособность из-за процессов изнашивания, коррозии, усталостного разрушения и других процессов, приводящих к «старению» машины.

По разным источникам на ремонт и техническое обслуживание машин за все время их эксплуатации затрачивается в 5-10 раз больше средств, чем на изготовление новых.

В индустриально развитых странах приблизительно 4,5 валового национального дохода тратится на трение, износ и коррозию подвижных соединений технических изделий. Это приводит к потерям сырьевых материалов и энергии общей стоимостью в несколько сотен биллионов долларов ежегодно во всем мире.

Особенно велики потери от недостаточной надежности уникальных машин. При выходе их из строя по непредвиденным обстоятельствам велика опасность трагических последствий для людей и окружающей среды.

Поэтому все большее внимание во всем мире уделяется вопросам эксплуатации и ремонта промышленных изделий.

Прогноз развития ведущих отраслей промышленности показывает, что в ХХ I веке по большинству отраслей в сфере эксплуатации и ремонта будет занято до 80…90% всех трудовых ресурсов.

Недостаточный уровень надежности изделий приводит к большим экономическим потерям.

Безопасность функционирования ТС - это комплексная проблема, которая включает вопросы, связанные с деятельностью человека, с организацией труда, с социально-политической ситуацией (например, возможность диверсии), с обученностью персонала, его дисциплинированностью. Надежность ТС, включая ее поведение в экстремальных ситуациях, является одним из основных факторов в проблеме безопасности.

Нарушение работоспособности и выход из строя многих ТС связаны не только с вопросами безопасности и экономическими затратами, но и оказывают непосредственное влияние на окружающую среду и экологическую обстановку на нашей планете.

Работа машин, когда их характеристики (например, КПД, состав выхлопных газов, герметичность, динамические нагрузки, температура и др.) выходят за допустимые пределы, когда осуществляется ремонт и техническое обслуживание машин, особенно при непредвиденных обстоятельствах или при ликвидации последствий аварии, приводят к вредным, часто разрушительным воздействиям на биосферу, на неживую природу, на атмосферу, на весь механизм взаимодействия в окружающем нас мире.

В проблеме создания конкурентоспособной продукции и отыскания наиболее эффективных путей ее сбыта существенную роль играет уровень надежности поставляемых потребителю машин.

Отказ ТС в процессе использования, если даже это не приводит к тяжелым последствиям, наносит серьезный моральный ущерб фирме-изготовителю и подрывает доверие к ней.

При отказах ТС в процессе их эксплуатации или хранения фирмы-изготовители или специальные организации вынуждены создавать разветвленную сеть технического обслуживания и аварийного ремонта с соответствующей информационной системой, добиваясь максимального удовлетворения разнообразных запросов потребителя. Чем выше гарантированный изготовителем уровень надежности ТС, тем, при прочих равных условиях, большей конкурентоспособностью она будет обладать.

Принятие решения о необходимости повышения достигнутого уровня надежности ТС должно опираться на экономический анализ. Современный уровень развития техники позволяет достичь практически любых показателей качества и надежности изделия. Все дело заключается в затратах для достижения поставленной цели.

Таким образом, высоконадежную ТС целесообразно создавать не только по требованиям безотказности и престижности, но и с позиции экономической эффективности.

При увеличении затрат на изготовление новой ТС надо решить вопрос, какую долю этих средств следует использовать для повышения технических характеристик и какую - на повышение надежности.

В условиях интенсивного развития машиностроения практика с ее разнообразными запросами в области проектирования, производства и эксплуатации ставит перед наукой о надежности новые задачи, связанные с прогнозированием, с методами испытания на надежность, с оптимизацией конструкции по критериям качества и надежности.

Вместе с тем, как бы разнообразны не были ТС и условия их работы, формирование показателей надежности происходит по общим законам, подчиняется единой логике событий, и раскрытие этих связей является основой для оценки, расчета и прогнозирования надежности, а также для построения рациональных систем производства, испытания и эксплуатации.

Наука о надежности изучает закономерности изменения показателей качества изделий с течением времени, и на основании этого разрабатываются методы, обеспечивающие с наименьшими затратами времени и средств необходимую продолжительность и безотказность работы ТС.

Следует подчеркнуть, что вопросы достижения определенного уровня показателей качества машин - их точности, мощности, КПД, производительности и других - рассматривают, как правило, отраслевые науки, а «надежность» рассматривает процесс изменения этих показателей с течением времени.

В настоящее время все большие позиции завоевывает методический подход, базирующийся на разработке моделей параметрической надежности, в которых формализуется процесс изменения во времени работоспособности ТС. Вероятностные характеристики этого процесса могут быть спрогнозированы на ранних стадиях создания их.

Поэтому основными особенностями научного аспекта проблемы надежности ТС приняты:

  • учет фактора времени, поскольку оценивается изменение начальных характеристик ТС в процессе ее эксплуатации;
  • сочетание вероятностных методов с закономерностями физических процессов;
  • прогнозирование возможного изменения состояния объекта при его эксплуатациии;
  • установление связи надежности ТС с показателями ее качества и работоспособности.

К основным задачам надежности относят:

  • На этапе проектирования - расчет сроков службы основных элементов ТС (по износу, усталостной прочности), прогнозирование надежности по ее выходным параметрам, анализ вариантов и выбор рациональной конструкции по показателям надежности, оценка оптимальных режимов работы и области применения с учетом заданного периода сохранения работоспособности.
  • На этапе изготовления нового образца - создание системы управления качеством и надежностью, обеспечение надежности технологического процесса изготовления деталей и узлов ТС, разработка методов испытания образцов по параметрам качества и надежности.
  • На этапе эксплуатации - разработка рациональной системы технического обслуживания и ремонта ТС, создание методов и средств для диагностирования состояния ТС в процессе эксплуатации, создание информационной базы данных о надежности системы и ее элементов.

При решении разнообразных задач надежности необходимо, в первую очередь, установить, как будет вести себя ТС при выполнении своих функций и во взаимодействии с окружающей средой, в результате каких причин будут постепенно изменяться ее технические характеристики.

Общий методологический подход для решения этих проблем представлен на рис. 1.1 в виде физико-вероятностной модели оценки параметрической надежности.

Рис. 1.1. Схема физико-вероятностной модели оценки параметрической надежности.

Данная схема раскрывает основные причинно-следственные связи, приводящие к изменению (деградации) во времени выходных параметров.

Деградация состояния ТС (машины) происходит потому, что при эксплуатации все виды энергии - механическая, тепловая, химическая, электромагнитная - воздействуют на неё и вызывают в ней обратимые и необратимые процессы, изменяющие ее начальные характеристики.

Можно указать следующие основные источники энергетических воздействий на машину:

  • действие энергии окружающей среды, в которой находится ТС в процессе эксплуатации, включая человека, исполняющего функции оператора;
  • внутренние источники энергии, связанные как с рабочими процессами, протекающими в ТС, так и с работой отдельных её агрегатов;
  • потенциальная энергия, которая накоплена в материалах и деталях ТС в процессе их изготовления (внутренние напряжения в отливке, монтажные напряжения);
  • воздействия на ТС при производстве ремонтных работ и при техническом обслуживании.

К основным видам энергии, влияющим на работоспособность ТС относят:

  • Механическую энергию, которая не только передается по всем звеньям ТС в процессе работы, но и воздействует на неё в виде статических и динамических нагрузок от взаимодействия с внешней средой.

Силы, возникающие в ТС, определяются характером рабочего процесса, инерцией перемещающихся частей, трением в кинематических парах. Эти силы являются случайными функциями времени, так как природа их возникновения связана со сложными физическими явлениями и с переменными режимами работы ТС. Например, в достаточно широких пределах изменяются нагрузки в динамических системах, крутящий момент двигателей, усилия на рабочих органах сельскохозяйственных, строительных, текстильных и других машин, силы трения в кинематических парах и др.

Механическая энергия в ТС может проявиться также как следствие тех затрат энергии, которые имели место при изготовлении её частей и сохранились в них в потенциальной форме. Например, деформация деталей при перераспределении внутренних напряжений после сборки узла или после термической обработки детали.

  • Тепловую энергию, действующую на ТС и ее части при колебаниях температуры окружающей среды, при осуществлении рабочего процесса (особенно сильные тепловые воздействия имеют место при работе двигателей и ряда технологических машин), при работе приводных механизмов, электротехнических и гидравлических устройств.
  • Химическую энергию, оказывающую влияние на работу ТС, например, посредством коррозии отдельных узлов на воздухе, который содержит влагу и агрессивные составляющие.

Если же ТС работает в условиях агрессивных сред (оборудование химической промышленности, суда, многие машины текстильной промышленности и др.)‚ то химические воздействия вызывают процессы, приводящие к разрушению отдельных элементов и узлов.

  • Ядерную (атомную) энергию, образующуюся в процессе ядерных реакций и воздействующую на материалы (особенно в космосе), изменяя их свойства.
  • Электромагнитную энергию в виде радиоволн (электромагнитных колебаний), пронизывающих все пространство вокруг ТС и оказывающих негативное влияние на работу электронной аппаратуры, которая все в большем объеме применяется в современных системах.
  • Биологические факторы также могут влиять на работоспособность ТС и вызывать биоповреждения, например, в виде биокоррозии металла, когда на его поверхности развиваются микроорганизмы (так называемые водородные бактерии). Особенно интенсивны эти процессы в тропических странах, где имеются микроорганизмы, которые не только разрушают некоторые виды пластмасс, но могут воздействовать и на металл.

Все виды энергии, действующие на ТС и ее агрегаты, вызывают в ней целый ряд нежелательных процессов, создают условия для ухудшения ее технических характеристик.

Часть процессов, происходящих в ТС, являются обратимыми. Обратимые процессы временно изменяют параметры деталей, узлов и всей системы в некоторых пределах, без тенденции прогрессивного ухудшения. Наиболее характерные примеры таких процессов – упругая деформация узлов и деталей машин, происходящая под действием внешних и внутренних сил, и тепловые деформации конструкций.

Необратимые процессы приводят к прогрессивному ухудшению технических характеристик ТС с течением времени и поэтому их называют процессами старения.

Наиболее характерными необратимыми процессами являются изнашивание, коррозия, усталость, перераспределение внутренних напряжений и коробление деталей с течением времени.

Процессы, изменяющие начальные характеристики ТС, протекают с различной скоростью и могут быть разделены на три основные категории.

Быстро протекающие процессы возникают сразу же, как только ТС начинает функционировать. Эти процессы имеют периодичность изменения, измеряемую обычно долями секунды. Они заканчиваются в пределах цикла работы ТС и вновь возникают при следующем цикле.

Сюда относятся вибрации узлов, изменения сил трения в подвижных соединениях, колебания рабочих нагрузок и другие процессы, влияющие на взаимное положение узлов ТС в каждый момент времени и искажающие цикл ее работы.

Процессы средней скорости связаны с периодом непрерывной работы ТС, их длительность измеряется обычно в минутах или часах. Они приводят к монотонному изменению начальных параметров. К этой категории относятся как обратимые процессы (например, изменение температуры самой ТС и окружающей среды), так и необратимые (например, процесс изнашивания режущего инструмента, который протекает во много раз интенсивнее, чем изнашиваются детали и узлы металлорежущего станка).

Медленно протекающие процессы проявляются в течение всего периода эксплуатации ТС. Они длятся дни и месяцы. К таким процессам относятся изнашивание основных элементов, ползучесть металлов, загрязнение поверхностей трения, коррозия, сезонные изменения температуры.

Эти процессы также влияют на точность, мощность, коэффициент полезного действия и другие параметры ТС, но изменения их происходят очень медленно. Обычные методы борьбы с этими процессами - ремонт и профилактические мероприятия, которые проводятся через определенные промежутки времени.

Следует подчеркнуть, что все процессы являются случайными функциями, для которых характерно рассеивание значений. Для многих ТСнаибольшую роль играет процесс изнашивания.

При рассмотрении влияния различных процессов на выходные параметры ТС следует учитывать и обратную связь, которая существует между ними и состоянием самой ТС. Например, износ отдельных механизмов машины может не только снизить точность ее функционирования, но и привести к возрастанию динамических нагрузок, которые, в свою очередь, интенсифицируют процесс изнашивания. Температурные деформации отдельных звеньев могут не только исказить положение узлов машины и этим повлиять на качество ее работы, но и привести к повышению нагрузок и, как следствие, к повышенному тепловыделению в механизмах.

Общая схема физико-вероятностной модели оценки параметрической надежности (рис. 1.1) показывает, что одной из главных причин необратимого изменения состояния ТС является протекание различных процессов старения в материалах, из которых она выполнена. Это существенно сказывается на работоспособном состоянии ТС. Оценка вероятности выхода технических характеристик ТС за допустимые пределы и является по существу оценкой уровня параметрической надежности машины. Закон распределения ‚ описывающий в дифференциальной или интегральной форме этот вероятностный процесс, называют законом надежности.

Лекция 2. Показатели надежности ТС. Виды отказов.

Для решения задач оценки и анализа надежности ТС, к которым относятся и ЛК военного и гражданского назначения, необходимо в первую очередь установить основные показатели, численные значения которых определяют уровень надежности ТС (изделия, машины, устройства и т.п.).

К основным показателям надежности, которые могут количественно оценивать уровень безотказности, долговечности, сохраняемости и ремонтопригодности ТС относят:

Показатели безотказности.

1.Вероятность безотказной работы является основным показателем безотказности ТС, который показывает вероятность того, что в заданном интервале времени (или в пределах заданной наработки) отказ системы не возникнет.

Вероятность безотказной работы может применяться для оценки уровня безотказности как восстанавливаемых, так и невосстанавливаемых систем и устройств. Значение ‚ как всякой вероятности, может находиться в пределах.

Например, если вероятность безотказной работы ТС в течение равняется 0,95‚ то это означает, что из большого количества систем в среднем 5% потеряют свою работоспособность раньше, чем через работы.

Показатель применим для оценки безотказности и одного изделия. В этом случае он определяет возможность изделия проработать без отказов заданный период времени. Вероятность безотказной работы и вероятность отказа образуют полную группу событий, поэтому

Значение характеризует степень опасности отказа и поэтому, чем ниже его значение, тем, при прочих равных условиях, изделие будет работать более надежно. Например‚ для ответственных изделий авиационной техники допустимые значения вероятности безотказной работы доходят до и выше.

Если последствия отказа связаны с незначительными экономическими потерями, допустимое значение принимается обычно в пределах.

Значение вероятности безотказной работы данного изделия можно определить, если известен закон распределения сроков наработок до отказа, который называют также законом надежности .

На рис. 2.1 представлена схема формирования закона надежности в дифференциальной (плотность вероятности) и интегральной формах .

Причиной отказа является случайный процесс изменения выходного параметра изделия с течением времени от начального до предельно допустимого значения. В силу случайности процесса он может протекать с различной интенсивностью. Поэтому наработки до предельного состояния, т.е. наработки до отказа проявляются как случайная величина.

Рис. 2.1. Схема формирования закона надежности.

Закон распределения может быть выражен в аналитической форме или в виде гистограммы, полученной на основании статистических данных.

Если для данного выходного параметра известен закон распределения наработок до отказа, то вероятность безотказной работы может быть определена для любого заданного значения по зависимости

Численно значения и равны соответственно площади под кривой распределения до и после значения (рис. 2.1,б).

Следует иметь в виду, что применение показателя без указания периода времени ‚ в течение которого рассматривается работа изделия, смысла не имеет .

Чем ниже требования безотказности, тем большую длительность работы изделия можно допускать.

  1. При высоких требованиях к надежности изделия задаются допустимым значением и определяют время работы изделия, соответствующее данной регламентированной вероятности безотказной работы. Значение называется гамма-процентным ресурсом (неслучайная величина) и по его значению судят о большей или меньшей безотказности изделий. При γ =50% получим значение среднего ресурса Тср.р.
  1. При обычных требованиях к надежности, если отказ не приводит к тяжелым последствиям, можно задаваться установленным ресурсом изделия t =Tу.р, (или cроком службы t =Тсл). В этом случае о безотказности изделия судят непосредственно по значению Р(t)‚ соответствующей установленному ресурсу.

2.Параметр потока отказов ω .

,

где:

Ω(t) - среднее число отказов в данном интервале времени от 0 до t (так

называемая ведущая функция);

Т m - наработка на отказ;

Параметр потока отказов ω - это среднее число отказов изделия в единицу времени.

Данный параметр применяется для восстанавливаемых ТС в случае отказов, которые легко устранимы и не приводят к каким-либо значительным последствиям (например, замена инструмента при работе на металлорежущем станке).

3.Запас надежности K н , который представляет отношение Х max к такому значению параметра Х γ, при котором с вероятностью γ параметр не выйдет за данные пределы, т.е.

.

Период времени, в течение которого обеспечивается выполнение условия (Кн≥1), называется гарантированным периодом безотказной работы изделия Tr .

4.Интенсивность отказов (λ-характеристика).

Это условная плотность вероятности возникновения отказа изделия, определяемая для рассматриваемого момента времени при условии, что до этого момента времени отказ не возник.

Интенсивность отказов в общем случае является функцией времени λ(t) и связана с другими характеристиками закона надежности зависимостью

.

Статистически интенсивность отказов оценивают по зависимости

1.14.

где:

Число всех изделий, участвующих в эксперименте;

Число оставшихся исправных изделий на момент времени

В практике расчетов безотказности ТС типа ЛК применение интенсивности отказов целесообразно на периоде нормальной эксплуатации, для которого значение λ-характеристика и принимается постоянной величиной (λ= const ).

Качественная зависимость интенсивности отказов от времени изображена на рис. 2.2.

Рис. 2.2. Зависимость интенсивности отказов от времени.

Как следует из рисунка, условно можно выделить три временных интервала, на которых поведение λ(t) > 0 существенно различно.

Интервал длительностью от 0 до t 1 - интервал приработки .

На нем интенсивность отказов монотонно уменьшается, достигая к моменту времени некоторой стационарной интенсивности. Само название интервала указывает на то, что на нем отказы устройств обусловлены в основном некачественностью сборки, монтажа, нарушением технологии, дефектами комплектующих изделий и т.д. В начале интервала приработки устройства со скрытыми дефектами отказывают с большей вероятностью. Интенсивность отказов к концу интервала приработки падает.

После этого следует интервал нормальной работы длительностью

t н = t 2 - t 1 .

На этом интервале отказы устройств в основном обусловливаются случайными, факторами, действующими при эксплуатации и скрытыми дефектами. Интенсивность отказов λ можно считать постоянной (λ=const) на всем интервале нормальной работы. Именно эта интенсивность отказов λ, особенно в радиоэлектронике, приводится в справочниках по надежности .

В этом случае вероятность безотказной работы на интервале нормальной работы определяется зависимостью

За интервалом нормальной работы следует интервал старения, на котором интенсивность отказов монотонно возрастает.

На этом интервале все значительнее начинают сказываться усталостные напряжения в элементах конструкций ТС, деградация отдельных функциональных блоков и комплектующих.

Показатели долговечности.

К основным показателям долговечности относят технический ресурс, средний ресурс, гамма-процентный ресурс и срок службы.

5.Технический ресурс – наработка объекта от начала его эксплуатации или возобновления её после ремонта до перехода в предельное состояние.

Для неремонтируемых (невосстанавливаемых) объектов он совпадает с наработкой до отказа.

6.Средний ресурс – математическое ожидание технического ресурса.

7.Гамма-процентный ресурс – наработка, в течение которой объект не достигает предельного состояния с вероятностью γ , выраженной в процентах.

8.Срок службы – календарная продолжительность от начала эксплуатации объекта до перехода в предельное состояние.

Для ремонтируемых ТС различают доремонтный, межремонтный, послеремонтный и полный (до списания) сроки службы. Срок службы измеряется в единицах календарного времени.

Рассмотренные показатели надежности не характеризуют интегрально надежность восстанавливаемой системы. Для этой цели служат комплексные показатели надежности.

Комплексные показатели надежности.

К ним относятся коэффициент готовности, коэффициент оперативной готовности, коэффициент сохранения эффективности и коэффициент технического использования.

9. Коэффициент готовности Kг – вероятность того, что система окажется в работоспособном состоянии в произвольный момент времени, кроме планируемых периодов, в течение которых применение системы по назначению не предусматривается. В общем случае Kг(t) является функцией времени.

Для больших интервалов времени его определяют по формуле

Из этой формулы видно, что коэффициент готовности характеризует одновременно два различных свойства системы: безотказность и ремонтопригодность (восстанавливаемость). T 0 – средняя наработка на отказ. Тв – среднее время восстановления.

10.Коэффициент оперативной готовности характеризует надежность систем, необходимость применения которых возникает в произвольный момент времени и которые должны проработать определенное время с заданной вероятностью безотказной работы:

где

Tp – требуемое время безотказной работы после начала оперативного использования ТС.

До момента оперативного использования ТС может находиться в режиме дежурства (при полных или облегченных нагрузках, но без выполнения заданных рабочих функций) или в режиме применения – для выполнения других рабочих функций. В обоих режимах возможно возникновение отказов и восстановления работоспособности системы.

11.Коэффициент сохранения эффективности – это отношение реального значения показателя эффективности использования ТС по назначению за определенную продолжительность эксплуатации к номинальному значению показателя эффективности, вычисленному при условии, что отказы ТС в течение этого периода не возникают.

В практике, как правило, ограничиваются расчетом коэффициента оперативной готовности.

12.Коэффициент технического использования Kти – это отношение математического ожидания интервала времени пребывания объекта в работоспособном состоянии за некоторый период эксплуатации к длительности этого периода. Коэффициент технического использования (Kти) характеризует долю времени нахождения объекта в работоспособном состоянии за данный период эксплуатации, включающий все виды технического обслуживания и ремонтов, и определяется зависимостью

где Траб - общее время полезной работы машины при ее использовании по назначению за заданный период эксплуатации;

ΣTiрем - суммарное время простоев машины из-за ее ремонта и технического обслуживания за тот же период.

Коэффициент технического использования является безразмерной величиной (0≤Кти≤1), и чем выше его значение, тем машина более приспособлена к длительной работе. Коэффициент Кти численно равен вероятности того, что в данный, произвольно взятый момент времени ТС работает, а не ремонтируется и не находится на техническом обслуживании.

На этапах проектирования и разработки ТС и устройств указанные показатели оцениваются расчетным путем, на этапах производства и эксплуатации определяются на основе результатов испытаний.

Основные виды и классификация отказов.

При расчете показателей надежности большое значение имеет вид и характер возникающих или возможных отказов.

Основными признаками, определяющими различные виды отказов, служат характер возникновения и протекания процессов, приводящих к отказу, последствия отказов и методы их устранения.

С этой точки зрения существуют следующие основные виды отказов:

1. Постепенные и внезапные отказы

Постепенные отказы возникают в результате протекания того или иного процесса старения, ухудшающего начальные параметры изделия .

Основным признаком постепенного отказа является то, что вероятность его возникновения в течение заданного периода времени от до, зависит от длительности предыдущей работы изделия t 1 . Чем дольше использовалось изделие, тем выше вероятность возникновения отказа, т.е. , если. К этому виду относится большинство отказов. Они связаны с изнашиванием, коррозией, усталостью, ползучестью и другими процессами старения материалов, из которых созданы изделия.

Внезапные отказы - это те, причиной которых являются процессы, возникшие в результате сочетания неблагоприятных факторов и случайных внешних воздействий, превышающих возможности изделия к их восприятию .

Основным признаком внезапного отказа является то, что вероятность его возникновения в течение заданного периода времени, не зависит от длительности предыдущей работы изделия.

Примерами таких отказов могут служить тепловые трещины, возникшие в детали вследствие прекращения подачи смазки; поломки детали из-за неправильных методов эксплуатации машины или возникновения перегрузок; деформация или поломка деталей, попавших в непредусмотренные условия работы.

Отказ при этом происходит, как правило, внезапно, без предшествующих симптомов разрушения и не зависит от степени изношенности.

Например, причиной отказа автомобильной покрышки может быть как износ протектора в результате длительной эксплуатации машины, так и прокол, возникший вследствие езды по плохой дороге и неблагоприятного сочетания случайных факторов.

Вероятность отказа покрышки из-за износа протектора у старой покрышки во много раз больше, чем у новой. В противоположность этому прокол - внезапный отказ - не связан с длительностью работы покрышки до данного события. Вероятность его возникновения одинакова как для новых покрышек, так и для изношенных.

Деление на постепенные и внезапные отказы определяется природой их возникновения.

Для постепенного отказа процесс потери работоспособности начинается сразу при эксплуатации изделия.

Для внезапного отказа время его возникновения является случайной величиной. Скорость процесса возникновения протекает весьма быстро.

Может быть и третий вид отказов, который включает особенности двух предыдущих и называется сложным отказом. Здесь время начала возникновения отказа - случайная величина, не зависящая от состояния изделия, а скорость процесса потери работоспособности изделия зависит от физики процесса старения. Например, внешние ударные воздействия на машину от посторонних предметов (редкое случайное событие) могут явиться источником возникновения усталостной трещины из-за первичного повреждения поверхности детали.

2. Отказы функционирования и параметрические отказы.

Отказ функционирования приводит к тому, что изделие не может выполнять возложенные на него функции. Например, в результате отказа редуктор не передает движения, двигатель внутреннего сгорания не запускается, насос не подает масла и т. п. Часто отказ функционирования связан с поломками или заклиниванием отдельных элементов изделия.

Параметрический отказ , который наиболее характерен для современных машин и изделий, возникает при выходе параметров (характеристик) изделия за допустимые пределы. Здесь изделие становится неработоспособным с точки зрения требований, установленных техническими условиями.

Продолжение использования изделия, имеющего параметрический отказ, может привести к весьма тяжелым экономическим и иным последствиям. Например, к выпуску некачественной продукции, которая может быть причиной отказов функционирования в сфере ее эксплуатации, к невыполнению изделием поставленных задач, к большим дополнительным затратам времени и средств. Но роль параметрических отказов важна еще и потому, что в сложных системах параметрические отказы элементов могут привести к отказу функционирования.

Поэтому параметрические отказы являются одним из основных объектов рассмотрения в теории надежности ТС и машин.

3. Фактические и потенциальные отказы.

При эксплуатации изделия рано или поздно наступит его первый, а затем и последующие отказы. Если эти отказы предотвращаются заблаговременным выполнением ремонта и регулировок, то они воспринимаются не как фактические, а как потенциально возможные события. Такие отказы будем называть потенциальными .

Для изготовителей и эксплуатационников характерно постоянное стремление к недопущению любых отказов при работе машины. Это может быть достигнуто не только за счет совершенства конструкции машины, но и путем предотвращения возможных отказов при правильной организации системы ремонта и технического обслуживания, строгого выполнения правил эксплуатации.

Однако отсутствие фактических отказов еще не свидетельствует о высокой надежности машины. Машина может вообще не иметь отказов при эксплуатации, тем не менее уровень ее надежности не будет удовлетворять разработчиков и потребителей, если это достигнуто за счет большого объема профилактических и ремонтных работ. Статистическая информация из сферы эксплуатации, когда учитываются лишь фактические отказы, часто дает неверное представление об уровне надежности ТС и машины.

4. Допустимые и недопустимые отказы.

Все возникающие при работе ТС и машин отказы можно разделить на те, появление которых неизбежно, так как изделие имеет ограниченные возможности по восприятию различных воздействий, и на отказы, которые являются следствием нарушения методов и правил проектирования, изготовления и эксплуатации машины и которые возможно и необходимо избежать.

Допустимые отказы связаны обычно с процессами старения, которые нельзя предотвратить и которые приводят к постепенному ухудшению выходных параметров изделия. Сюда же следует отнести внезапные отказы, которые вызваны неблагоприятным сочетанием факторов, если последние находятся в пределах, указанных в технических условиях. Конструктор может сознательно допускать некоторую (как правило, небольшую) вероятность возникновения отказа, чтобы облегчить и удешевить конструкцию. Это, конечно, допустимо лишь в тех случаях, когда отказ не вызовет катастрофических последствий . Например, даже в самолетных конструкциях допускается развитие усталостных трещин в некоторых элементах и панелях крыльев.

Недопустимые отказы связаны с нарушением условий производства и эксплуатации и с неучтенными факторами.

Во-первых, это отказы из-за нарушения технических условий при изготовлении и сборке изделий. Во-вторых, отказы могут наступить при нарушении правил и условий эксплуатации и ремонта – превышение режимов работы машины выше допустимых, нарушение правил ремонта, ошибки людей, управляющих машиной, и т.п. Кроме этого, существуют и скрытые причины возникновения недопустимых отказов – это неучтенные в технических условиях и нормативах параметры, влияющие на надежность. Изделие может быть выполнено в строгом соответствии с техническими условиями (ТУ), однако сами ТУ не учитывают всех тех объективно существующих факторов, которые влияют на надежность и проявляются в процессе эксплуатации. Анализ принадлежности каждого отказа к той или иной категории классификации позволяет выбирать показатели надежности и модель расчета, правильно отражающие реальную ситуацию, в которой используется изделие.

Нормирование показателей надежности

При создании новой ТС или машины необходимо назначить показатели надежности, чтобы при эксплуатации машины были гарантированы безопасность и высокая эффективность работы.

Обычно, в зависимости от требований к эффективности работы изделия и от требований к его надежности достигается компромисс между ними.

Нормированию подлежат в первую очередь вероятность безотказной работы изделия с оценкой продолжительности периода, в течение которого она оценивается, а для высоконадежных систем, у которых, должен устанавливаться запас надежности и значение.

При этом допустимое значение вероятности безотказной работы является мерой для оценки последствий отказа, которые могут быть самыми разнообразными - от незначительного материального ущерба до катастрофического. Эти последствия связаны с характером самого отказа, с категорией отказа и с такими факторами, как время, необходимое для устранения отказа, вид ремонта, продолжительность существования отказа (возможность самовосстановления работоспособности изделия), влияние данного отказа на вероятность возникновения других отказов и т.д.

Все особенности отказа и его последствий следует характеризовать допустимой вероятностью безотказной работы, которая аккумулирует в себе и численно оценивает опасность последствий отказа.

Так, если отказ существует непродолжительное время, а затем работоспособность машины самовосстанавливается и за это время не произойдет необратимых процессов, то будет допускаться более низкая вероятность безотказной работы, чем при «полном» отказе и более опасных последствиях. При оценке надежности сложных изделий не только машина в целом, но и отдельные ее узлы и агрегаты должны характеризоваться допустимой вероятностью безотказной работы. При нормировании показателей надежности необходимо учитывать специфику конструкции и назначение данной машины.

Обычно применяют шесть классов надежности в зависимости от допустимых значений (табл. 2.2).

Таблица 2.2.

В нулевой класс входят малоответственные детали и узлы, отказ которых остается практически без последствий. Для них хорошим показателем надежности может быть средний срок службы, наработка на отказ или параметр потока отказов.

Классы 1-4 характеризуются повышенными требованиями к безотказности (номер класса соответствует числу девяток после запятой у значения.

В пятый класс включаются высоконадежные изделия, отказ которых

в заданный период недопустим.

Другие похожие работы, которые могут вас заинтересовать.вшм>

21222. Автоматизированный логико-вероятностный расчет надежности параллельно последовательных структур технических систем 49.24 KB
Проблема надежности является ключевой в развитии техники. Одним из перспективных методов анализа надежности сложных систем является логико-вероятностный который основан на математическом аппарате алгебры логики и предполагает определенные связи между отказами системы и событиями от которых они зависят - отказами элементов системы. Цели работы Изучить методику автоматизированного логико-вероятностного расчета ЛВР надежности для различных параллельно-последовательных структур ППС.
17896. Безопасность и надежность систем газоснабжения 1.54 MB
Системы газоснабжения Системы газоснабжения можно разделить на систему газопроводов и автономные системы. Схема одноступенчатой системы распределения газа: 1 - магистральный газопровод; 2 - газораспределительная станция; 3 - кольцевой газопровод; 4 - ответвления к потребителям; 5 - тупиковый газопровод. Центром такой системы является хранилище газа называемое газгольдером. Неотъемлемая часть автономной системы газоснабжения – надежная система защиты.
20296. Проблемы и задачи проектирования отраслевых информационно-аналитических систем 519.23 KB
В данной работе необходимо разработать программу а точнее систему управления базой данных какой-либо риэлторской фирмы для определенного города которая позволяет вносить удалять и изменять данные. Область применения: эта небольшая по размеру программа управления базой данных применима в основном для частных коммерческих организаций занимающихся непосредственно продажей недвижимости в частности квартир: однокомнатных двухкомнатных трехкомнатных и домов. На этапе разработки будущей системы именно ему необходимо определить объем и состав...
1795. Создании технических систем и технологий 31.08 KB
Основные особенности задач решаемых при проектировании технических объектов; Применить научный подход к анализу и синтезу решений при проектировании технических объектов; Использовать методы анализа и синтеза технических решений для построения автоматизированных систем проектирования технических объектов;
14277. Введение в анализ, синтез и моделирование систем 582.75 KB
Строго говоря различают три ветви науки изучающей системы: системологию теорию систем которая изучает теоретические аспекты и использует теоретические методы теория информации теория вероятностей теория игр и др. Организация системы связана с наличием некоторых причинноследственных связей в этой системе. Организация системы может иметь различные формы например биологическую информационную экологическую экономическую социальную временную пространственную и она определяется причинноследственными связями в материи и социуме. У...
1388. Разработка и реализация программного обеспечения ориентированного на определение вероятностных характеристик надежности элементов по наблюдениям вероятностных характеристик надежности всей системы 356.02 KB
Естественным подходом, эффективно применяемым при исследовании СС, является использование логико-вероятностных методов. Классический логико-вероятностный метод предназначен для исследования характеристик надёжности структурно-сложных систем
9552. Введение в эргономику. Структура эргономики, основные понятия эргономики Цель и задачи эргономики 196.47 KB
Эргоно́мика (от др.-греч.ἔργον - работа и νόμος - «закон») - в традиционном понимании - наука о приспособлении должностных обязанностей, рабочих мест, предметов и объектов труда, а также компьютерных программ для наиболее безопасного и эффективного труда работника, исходя из физических и психических особенностей человеческого организма.
16108. Модернизация пенсионных систем: достигнутые рубежи и ключевые проблемы 21.64 KB
Одновременно в этой группе стран поддерживалось развитие добровольного профессионального и индивидуального пенсионного страхования были сформированы специальные резервные фонды средства которых предназначены для смягчения финансового бремени связанного со старением населения. Добровольное пенсионное накопление наиболее успешно развивается и охватывает максимальное число занятых до 45-50 в странах в которых обязательное пенсионное страхование обеспечивает относительно невысокий...
13364. Статистика рынка труда: основные категории, задачи статистического изучения, актуальные проблемы, организация статистического наблюдения 9.53 KB
Анализ функционирования экономики не возможен без характеристики трудового потенциала страны и территории занятости населения эффективности использования живого труда оплаты труда организации условий труда. Традиционно вопрос состояния и развития трудового потенциала и занятости населения в отечественной статистике изучался в рамках статистики трудовых ресурсов а вопрос рабочей силы использования рабочего времени производительности труда оплаты труда организации и условий труда изучался в рамках статистики труда. Переход к рыночной...
10647. Основные проблемы молекулярной биофизики. Физика биополимеров как раздел молекулярной биофизики и ее задачи. Первый закон термодинамики 110.11 KB
Биология – это наука о живой природе объекты которой неизмеримо сложнее неживых. В этом определении нет разграничения живой и неживой природы. Она не сводится к использованию физических методов или приборов в биологических экспериментах. Медицинский термометр электрокардиограф томограф микроскоп – физические приборы но биолог или врач использующие эти устройства не занимаются биофизикой.

Показателями надежности называют количественные характеристики одного или нескольких свойств объекта, составляющих его надежность. К таким характеристикам относят, например, временные понятия - наработку, наработку до отказа, наработку между отказами, ресурс, срок службы, время восстановления. Значения этих показателей получают по результатам испытаний или эксплуатации.

По восстанавливаемости изделий показатели надежности подразделяют на пока- затели для восстанавливаемых изделий и показатели невосстанавливаемых изделий.

Применяются также комплексные показатели. Надежность изделий, в зависимости от их назначения, можно оценивать, используя либо часть показателей надежности, либо все показатели.

Показатели безотказности :

    вероятность безотказной работы - вероятность того, что в пределах заданной наработки отказ объекта не возникает;

    средняя наработка до отказа - математическое ожидание наработки объекта до первого отказа;

    средняя наработка на отказ - отношение суммарной наработки восстанавли-ваемого объекта к математическому ожиданию числа его отказов в течение этой наработки;

    интенсивность отказов - условная плотность вероятности возникновения отказа объекта, определяемая при условии, что до рассматриваемого момента времени отказ не возник. Этот показатель относится к невосстанавливаемым изделиям.

Показатели долговечности.

Количественные показатели долговечности восстанавливаемых изделий делятся на 2 группы.

1. Показатели, связанные со сроком службы изделия:

    срок службы - календарная продолжительность эксплуатации от начала экс-плуатации объекта или ее возобновление после ремонта до перехода в предельное со-стояние;

    средний срок службы - математическое ожидание срока службы;

    срок службы до первого капитального ремонта агрегата или узла – это про-должительность эксплуатации до ремонта, выполняемого для восстановления исправности и полного или близкого к полному восстановления ресурса изделия с заменой или восстановлением любых его частей, включая базовые;

    срок службы между капитальными ремонтами , зависящий преимущественно от качества ремонта, т.е. от того, в какой степени восстановлен их ресурс;

    суммарный срок службы – это календарная продолжительность работы техни-ческой системы от начала эксплуатации до выбраковки с учетом времени работы после ремонта;

    гамма-процентный срок службы - календарная продолжительность эксплуатации, в течение которой объект не достигнет предельного состояния с вероятностью γ, выраженной в процентах.

Показатели долговечности, выраженные в календарном времени работы, позволяют непосредственно использовать их в планировании сроков организации ремонтов, поставки запасных частей, сроков замены оборудования. Недостаток этих показателей заключается в том, что они не позволяют учитывать интенсивность использования оборудования.

2. Показатели, связанные с ресурсом изделия:

    ресурс - суммарная наработка объекта от начала его эксплуатации или ее во-зобновление после ремонта до перехода в предельное состояние.

    средний ресурс - математическое ожидание ресурса; для технических систем в качестве критерия долговечности используют технический ресурс;

    назначенный ресурс – суммарная наработка, при достижении которой эксплуатация объекта должна быть прекращена независимо от его технического состояния;

    гамма-процентный ресурс - суммарная наработка, в течение которой объект не достигнет предельного состояния с заданной вероятностью γ, выраженной в процентах.

Единицы для измерения ресурса выбирают применительно к каждой отрасли и к каждому классу машин, агрегатов и конструкций отдельно. В качестве меры продолжи-тельности эксплуатации может быть выбран любой неубывающий параметр, характе-ризующий продолжительность эксплуатации объекта (для самолетов и авиационных двигателей естественной мерой ресурса служит налет в часах, для автомобилей – пробег в километрах, для прокатных станов – масса прокатанного металл в тоннах. Если наработку измерять числом производственных циклов, то ресурс будет принимать дискретные значения.

Комплексные показатели надежности.

Показателем, определяющим долговечность системы, объекта, машины, может служить коэффициент технического использования.

Коэффициент технического использования - отношение математического ожидания суммарного времени пребывания объекта в работоспособном состоянии за некоторый период эксплуатации к математическому ожиданию суммарного времени пребывания объекта в работоспособном состоянии и всех простоев для ремонта и технического обслуживания:

Коэффициент технического использования, взятый за период между плановыми ремонтами и техническим обслуживанием, называется коэффициентом готовности, ко-

торый оценивает непредусмотренные остановки машины и что плановые ремонты и мероприятия по техническому обслуживанию не полностью выполняют свою роль.

Коэффициент готовности - вероятность того, что объект окажется в работо-способном состоянии в произвольный момент времени, кроме планируемых периодов, в течение которых применение объекта по назначению не предусматривается. Физический смысл коэффициента готовности - это вероятность того, что в прогнозируемый момент времени изделие будет исправно, т.е. оно не будет находиться во внеплановом ремонте.

Коэффициент оперативной готовности - вероятность того, что объект окажется в работоспособном состоянии в произвольный момент времени, кроме планируемых периодов, в течение которых применение объекта по назначению не предусматривается, и, начиная с этого момента, будет работать безотказно в течение заданного интервала времени.

Классификация показателей . В зависимости от способа получения показатели подразделяют на расчетные, получаемые расчетными методами; экспериментальные, определяемые по данным испытаний; эксплуатационные, получаемые по данным экс-плуатации.

В зависимости от области использования различают показатели надежности нормативные и оценочные.

Нормативными называют показатели надежности, регламентированные в нор-мативно-технической или конструкторской документации.

К оценочным относят фактические значения показателей надежности опытных образцов и серийной продукции, получаемые по результатам испытаний или эксплуатации.

  • 1.7. Энергоэнтропийная концепция опасностей
  • 1.8. Номенклатура опасностей
  • 1.9. Квантификация опасностей
  • 1.10. Идентификация опасностей
  • 1.11. Причины и последствия
  • 1.12. Пороговый уровень опасности
  • 1.13. Показатели безопасности технических систем
  • § 2. Основные положения теории риска
  • 2.1. Понятие риска
  • 2.2. Развитие риска на промышленных объектах
  • 2.3. Основы методологии анализа и управления риском
  • 2.3.1. Анализ риска: понятие и место в обеспечении безопасности технических систем
  • 2.3.2. Оценка риска: понятие и место в обеспечении безопасности технических систем
  • 2.3.3. Управление риском: понятие и место в обеспечении безопасности технических систем
  • 2.3.4. Общность и различие процедур оценки и управления риском
  • 2.3.5. Количественные показатели риска
  • 2.4. Моделирование риска
  • 2.5. Принципы построения информационных технологий управления риском
  • § 3. Роль внешних факторов, воздействующих на формирование отказов технических систем
  • 3.1. Общие замечания
  • 3.2. Классификация внешних воздействующих факторов
  • 3.3. Воздействие температуры
  • 3.4. Воздействие солнечной радиации
  • 3.5. Воздействие влажности
  • 3.6. Воздействие давления
  • 3.7. Воздействие ветра и гололеда
  • 3.8. Воздействие примесей воздуха
  • 3.9. Воздействие биологических факторов
  • 3.10. Старение материалов
  • 3.11. Факторы нагрузки
  • § 4. Основны теории расчета надежности технических систем
  • 4.1. Основные понятия теории надежности
  • 4.2. Количественные характеристики надежности
  • 4.3. Теоретические законы распределения отказов
  • 4.4. Резервирование
  • 4.4.2. Способы структурного резервирования
  • 4.5. Основы расчета надежности технических систем по надежности их элементов
  • Надежность резервированной системы
  • Включение резервного оборудования системы замещением
  • Надежность резервированной системы в случае комбинаций отказов и внешних воздействий
  • Анализ надежности систем при множественных отказах
  • § 5. Методика исследования надежности технических систем
  • 5.1. Системный подход к анализу возможных отказов: понятие, назначение, цели и этапы, порядок, границы исследования
  • 5.2. Выявление основных опасностей на ранних стадиях проектирования
  • 5.3. Исследования в предпусковой период
  • 5.4. Исследования действующих систем
  • 5.5. Регистрация результатов исследования
  • 5.6. Содержание информационного отчета по безопасности процесса
  • § 6. Инженерные методы исследования безопасности технических систем
  • 6.1. Понятие и методология качественного и количественного анализа опасностей и выявления отказов систем
  • 6.2. Порядок определения причин отказов и нахождения аварийного события при анализе состояния системы
  • 6.3. Предварительный анализ опасностей
  • 6.4. Метод анализа опасности и работоспособности- аор (hazard and operability study - hazop)
  • 6.5. Методы проверочного листа (check-list) и "что будет если...?" ("what - if")
  • 6.6. Анализ вида и последствий отказа - авпо (failure mode and effects analysis - fmea)
  • 6.7. Анализ вида, последствий и критичности отказа- авпко (failure mode, effects and critical analysis - fmeca)
  • 6.8. Дерево отказов - до (fault tree analysis - fta)
  • 6.9. Дерево событий - дс (event tree analysis - еta)
  • 6.10. Дерево решений
  • 6.11. Логический анализ
  • 6.12. Контрольные карты процессов
  • 6.13. Распознавание образов
  • 6.14. Таблицы состояний и аварийных сочетаний
  • § 7. Оценка надежности человека как звена сложной технической системы
  • 7.1. Причины совершения ошибок
  • 7.2. Методология прогнозирования ошибок
  • 7.3. Принципы формирования баз об ошибках человека
  • § 8. Организация и проведение экспертизы технических систем
  • 8.1. Причины, задачи и содержание экспертизы
  • 8.2. Организация экспертизы
  • 8.3. Подбор экспертов
  • 8.4. Экспертные оценки
  • 8.5. Опрос экспертов
  • 8.6. Оценка согласованности суждений экспертов
  • 8.7. Групповая оценка и выбор предпочтительного решения
  • 8.8. Принятие решения
  • 8.9. Работа на завершающем этапе
  • § 9. Мероприятия, методы и средства обеспечения надежности и безопасности технических систем
  • 9.1. Стадия проектирования технических систем
  • 9.2. Стадия изготовления технических систем
  • 9.3. Стадия эксплуатации технических систем
  • 9.4. Техническая поддержка и обеспечение
  • 9.5. Технические средства обеспечения надежности и безопасности технических систем
  • 9.6. Организационно-управленческие мероприятия
  • 9.7. Диагностика нарушений и аварийных ситуаций в технических системах
  • 9.8. Алгоритм обеспечения эксплуатационной надежности технических систем
  • § 10. Технические системы безопасности
  • 10.1. Назначение и принципы работы защитных систем
  • 10.2. Типовые структуры и принципы функционирования автоматических систем защиты
  • 10.3. Автоматическая интеллектулизированная система защиты объекта и управления уровнем безопасности
  • 10.4. Типовые локальные технические системы и средства безопасности
  • § 11. Правовые аспекты анализа риска и управления промышленной безопасностью
  • 11.1. Классификация промышленных объектов по степени опасности
  • 11.2. Оценка опасности промышленного объекта
  • 11.3. Декларация безопасности опасного промышленного объекта
  • 11.4. Требования к размещению промышленного объекта
  • 11.5. Система лицензирования
  • 11.6. Экспертиза промышленной безопасности
  • 11.7. Информирование государственных органов и общественности об опасностях и авариях
  • 11.8. Ответственность производителей или предпринимателей за нарушения законодательства и нанесенный ущерб
  • 11.9. Учет и расследование
  • 11.10. Участие органов местного самоуправления и общественности в процессах обеспечения промышленной безопасности
  • 11.11. Государственный контроль и надзор за промышленной безопасностью
  • 11.13. Экономические механизмы регулирования промышленной безопасности
  • 11.14. Российское законодательство в области промышленной безопасности
  • § 12. Принципы оценки экономического ущерба от промышленных аварий
  • 12.1. Понятие ущерба и вреда. Структура вреда
  • 12.2. Экономический и экологический вред
  • 12.3. Принципы оценки экономического ущерба
  • § 5. Методика исследования надежности технических систем

    5.1. Системный подход к анализу возможных отказов: понятие, назначение, цели и этапы, порядок, границы исследования

    С позиций безопасности системный подход к анализу возможных отказов состоит в том, чтобы увидеть, как части системы функционируют во взаимодействии с другими ее частями.

    Системный анализ - методология исследования любых объектов посредством представления их в качестве отдельных элементов и анализа этих элементов; применяется для:

    Выявления и четкого формулирования проблемы в условиях неопределенности;

    Выбора стратегии исследования и разработок;

    Точного определения систем (границ, входов, выходов, связей), выявления целей развития и функционирования системы;

    Выявление функций и состава вновь создаваемой системы.

    Системы являются сложными многоуровневыми и многокомпонентными образованиями. В целях адекватной информации и определения причинных связей элементы системы конкретизируются. Такой подход позволяет однозначно определить опасности и опасные состояния системы. Он обеспечивается декомпозицией систем - расчленением иерархии и организации системы на взаимосвязанные составные части (подсистемы, элементы), последующим исследованием их независимо друг от друга и координацией локальных решений. Этот метод представляет, по существу, разложение сложных систем на простые с применением теорем об условных вероятностях и условных распределениях. При этом вначале вычисляются показатели надежности более простых подсистем, а затем полученные результаты группируются с целью получения характеристик всей системы в целом. Рассматриваемый метод может быть использован для упрощения, как пространства состояний, так и конфигурации системы. Эффективность метода зависит от выбора ведущего элемента, т.е. элемента, используемого при декомпозиции системы. Если этот элемент выбран неудачно, то, несмотря на идентичность конечного результата, вычисления окажутся значительно более громоздкими. В случае сравнительно сложных систем правильный выбор главных элементов для создания простой конфигурации может оказаться сложной задачей.

    Трудности, возникающие при рассмотрении сложных систем, можно уменьшить, используя метод преобразования. Он состоит в последовательном упрощении систем с последовательным и параллельным соединением элементов путем преобразования их в эквивалентные схемы. Подобная процедура выполняется до тех пор, пока вся система не будет сведена к одному-двум элементам. При этом обычно делается допущение о независимости отказов. Основное преимущество данного метода заключается в его простоте и доступности, однако, он не приемлем при наличии постепенных отказов.

    Анализом возможных отказов системы или ее элементов называют оценку влияния возможных отказов элементов следующего уровня структуры на выходные характеристики исследуемого объекта и определение перечня возможных отказов. Возможным отказом системы называется состояние, в которое может перейти система за время эксплуатации при возникновении отказов входящих в него элементов следующего уровня структуры. Совокупность возможных отказов называют перечнем возможных отказов.

    Анализ возможных отказов проводят с целью выявления возможных причин их возникновения, оценки вероятности возникновения, времени возникновения, выбора методов обнаружения и регистрации, определения последствий отдельных видов отказов и разработки предупредительных, контрольных и защитных мероприятий по обеспечению надежности и безопасности на стадиях эксплуатации и проектирования систем.

    В зависимости от сложности системы анализ возможных отказов проводят с использованием различных источников информации - конструкторской документации и схем эксплуатации, карт технологических процессов, опыта создания и эксплуатации систем-аналогов, циклограмм функционирования, результатов статистической обработки измерений входных и выходных параметров и др.

    Анализ возможных отказов предусматривает следующие этапы:

    Анализ процесса эксплуатации системы и составление перечня периодов эксплуатации;

    Задание границ рассмотрения системы;

    Рассмотрение взаимодействия и взаимовлияния составных частей (элементов) системы;

    Назначение контролируемых параметров и систем контроля;

    Определение характерных признаков отказов и их симптомов;

    Составление перечня возможных отказов для каждого периода эксплуатации;

    Оценка вероятностных и временных характеристик каждого вида отказов из перечня возможных отказов;

    Анализ критичности отказов и ранжирование отказов по важности;

    Определение возможных последствий отказов, возможности их обнаружения и устранения (или уменьшения степени опасности).

    Анализ должен удовлетворять следующим требованиям, выполнение которых в значительной мере повышает качество проводимых исследований:

    Проводиться с достаточной степенью полноты и детализации;

    Учитывать физическую природу процессов, протекающих в системе;

    Учитывать влияние взаимных отказов, различные режимы работы элементов системы, возможные отказы между элементами (отказы межсистемных связей и соединений);

    Обеспечивать согласованность параметров элементов системы.

    Анализ процесса эксплуатации системы позволяет получить необходимые сведения для выявления возможных отказов. Его проводят в следующем порядке:

    Определяют назначение системы, особенности условий и режимов эксплуатации и перечень выполняемых задач;

    Выделяют основные, обеспечивающие и вспомогательные функции;

    Для каждой выявленной функции определяют взаимно однозначные группы статистически независимых выходных параметров, номинальные и предельно допустимые значения каждого параметра;

    Определяют виды элементов системы, их функциональные особенности и характер взаимодействия при эксплуатации, наличие резервных элементов, выявляют элементы, не имеющие аналогов;

    Определяют условия эксплуатации (основные и резервные режимы работы, возможности работы с измененными выходными параметрами и др.);

    Определяют продолжительность каждого периода эксплуатации.

    Составление перечня возможных отказов. Он должен обладать достаточной полнотой, определяемой наличием наиболее вероятных и критичных (приводящих к наиболее тяжелым последствиям) отказов, но не может быть избыточным из-за включения в него зависимых отказов. Отказы, возникающие по одной и той же причине, могут быть объединены.

    Общее число возможных отказов в перечне складывается из общего числа всех выделенных условно независимых параметров по каждой функции системы с учетом возможного числа нарушений предельно допустимых значений по каждому параметру.

    При составлении перечня анализируют также ограничения на условия применения изделия, нарушения которых рассматривают как возможные отказы. Далее уточняют перечень при проведении анализа причин, оценке вероятностей возникновения, возможностей обнаружения отказов и их последствий. Перечни возможных отказов и их причин оформляются в виде отчетов.

    Методические основы задания границ системы при анализе опасных состояний и отказов состоят в следующем. Только главные, наиболее вероятные или критические события должны рассматриваться на начальной стадии анализа. Для определения этих событий можно использовать анализ критичности. По мере продвижения исследовательской работы (экспертизы) можно включать все более редкие или менее вероятные события или предпочесть не принимать их в расчет.

    В принципе окружающие условия - это весь мир, в котором находится данная система. Таким образом, чтобы не отклоняться от намеченной цели, необходимо установить разумные пределы влияния окружающей среды при проведении исследования с помощью дерева событий или отказов, поскольку эти два подхода предусматривают детальную разработку процесса развития начальных аварийных событий в системе и окружающей ее среде.

    При определении границ системы требуется тщательно установить начальные состояния элементов. Все элементы, которые имеют более одного рабочего состояния, создают различные начальные условия. Например, начальное количество жидкости в баке может быть регламентировано. Событие "бак полный" становится одним начальным состоянием, а "бак пустой" является другим состоянием. Необходимо также точно установить рабочий отрезок времени: например, условия при пуске и остановке могут создавать другого рода опасные условия, отличающиеся от установившихся режимов работы.

    Когда достаточное количество информации по системе собрано, можно составить описания вариантов развития процесса (сценариев) и определить конечные события. Затем устанавливают причинные взаимосвязи, ведущие к каждому конечному событию, например при помощи дерева отказа.

    Обычно система изображается в виде блок-схемы, показывающей все функциональные (или причинные) взаимосвязи и элементы. При ее построении исключительно важную роль приобретает правильное задание граничных условий, которые не следует путать с физическими границами системы.

    Одним из основных требований, предъявляемых к граничным условиям, является задание завершающего (головного) нежелательного события, установление которого требует особой тщательности, поскольку именно для него, как для основного отказа, выполняется анализ. Кроме того, чтобы проводимый анализ был понятен всем заинтересованным лицам, исследователь обязан составить перечень всех допущений, принимаемых при определении системы и построении порядка исследования.

    Обычно для каждой системы строят несколько маршрутов развития завершающего (опасного) события. Впоследствии они могут быть и связаны, но на этапе анализа с ними работают отдельно. Аналогично, если система функционирует в различных режимах, то может понадобиться анализ развития опасных состояний для каждого из режимов.

    Взаимосвязи элементов и топография системы. Система состоит из таких элементов, как единицы оборудования, материалы, персонала предприятия (необязательно, чтобы эти элементы были самыми мелкими элементами в системе; они могут быть блоками или целыми подсистемами), которые находятся в определенной окружающей среде и подвержены внешнему воздействию.

    Опасные состояния вызываются одним или несколькими элементами, приводящими к отказам в системе. Окружающая среда, персонал, старение могут влиять на систему только через ее элементы (рис.5.1.1.).

    Каждый элемент системы связан с другими элементами специфическим образом, а идентичные элементы могут иметь различные характеристики в различных системах. Поэтому необходимо уточнять взаимосвязи и топографию системы. Взаимосвязи и топографию определяют, например, путем изучения системы трубопроводов данного предприятия, электрических схем, механических соединений, потоков информации, а также физического расположения элементов. Эти связи наилучшим образом можно представить в виде различных схем системы; технических описаний системы, карт технологических потоков и др., которые оказываются полезными в данной работе.

    Рис. 5.1.1. Воздействия и взаимосвязи элементов

    Например, гидравлический удар, который вызывается быстрым закрытием клапана и который, в свою очередь, приводит к потере герметичности фланцевого соединения, выявляют при изучении схемы трубопроводов. Взаимовлияние двух расположенных емкостей возможно в случае пожара. Возможные изменения состояния элементов системы, возникающие в результате других причин, следует также включать в технические описания или в карты логических переходов.

    Работа в подготовительный период. Объем подготовительной работы определяется сложностью системы. Работа состоит из четырех основных этапов:

    Получение данных;

    Обработка данных;

    Планирование последовательности проведения исследований;

    Организация обсуждений.

    Как правило, данные включают различные чертежи и схемы (линейные схемы, карты технологического процесса, схемы размещения производственного оборудования и пр.), эксплуатационные инструкции, схемы последовательного контроля за работой приборов, логические схемы, программы для ЭВМ, иногда даже инструкции изготовителей и поставщиков по правилам эксплуатации оборудования.

    Эти данные должны быть проверены для того, чтобы удостовериться в их пригодности для исследования и выявить в них все противоречия и неточности. Объем работы, необходимой для обработки данных и планирования последовательности проведения исследований, зависит от типа системы.

    Руководитель группы разрабатывает план проведения исследования и обсуждает как метод, так и план исследования с членами группы до начала работы по выявлению опасностей.

    "

    Показателями надежности называют количественные характеристики одного или нескольких свойств объекта, составляющих его надежность. Значения показателей надежности получают по результатам испытаний или эксплуатации. По восстанавливаемости изделий показатели надежности подразделяют на показатели невосстанавливаемых изделий и показатели для восстанавливаемых изделий.

    Невосстанавливаемым называют такой элемент, который после работы до первого отказа заменяют на такой же элемент, так как его восстановление в условиях эксплуатации невозможно. В качестве примеров невосстанавливас-мых элементов можно назвать диоды, конденсаторы, триоды, микросхемы, гидроклаианы, пиропатроны и т. п.

    Большинство сложных технических систем с длительными сроками службы являются восстанавливаемыми, т. е. возникающие в процессе эксплуатации отказы систем устраняют при ремонте. Технически исправное состояние изделий в процессе эксплуатации поддерживают проведением профилактических и восстановительных работ.

    Надежность изделий, в зависимости от их назначения, можно оценивать, используя либо часть показателей надежности, либо все показатели.

    Показатели безотказности:

    • - вероятность безотказной работы - вероятность того, что в пределах заданной наработки отказ объекта не возникает;
    • - средняя наработка до отказа - математическое ожидание наработки объекта до первого отказа;
    • - средняя наработка на отказ - отношение суммарной наработки восстанавливаемого объекта к математическому ожиданию числа его отказов в течение этой наработки;
    • - интенсивность отказов - условная плотность вероятности возникновения отказа объекта, определяемая при условии, что до рассматриваемого момента времени отказ не возник. Этот показатель относится к невосстанавливае-мым изделиям.

    Показатели долговечности. Количественные показатели долговечности восстанавливаемых изделий делятся на две группы.

    • 1) Показатели, связанные со сроком службы изделия:
      • - срок службы - календарная продолжительность эксплуатации от начала эксплуатации объекта или ее возобновление после ремонта до перехода в предельное состояние;
      • - средний срок службы - математическое ожидание срока службы;
      • - срок службы до первого капитального ремонта агрегата или узла - это продолжительность эксплуатации до ремонта, выполняемого для восстановления исправности и полного или близкого к полному восстановления ресурса изделия с заменой или восстановлением любых его частей, включая базовые;
      • - срок службы между капитальными ремонтами, зависящий преимущественно от качества ремонта, т. е. от того, в какой степени восстановлен их ресурс;
      • - суммарный срок службы - эго календарная продолжительность работы технической системы от начала эксплуатации до выбраковки с учетом времени работы после ремонта;
      • - гамма-процентный срок службы - календарная продолжительность эксплуатации, в течение которой объект не достигнет предельного состояния с вероятностью у, выраженной в процентах.
    • 2) Показатели, связанные с ресурсом изделия:
      • - ресурс - суммарная наработка объекта от начала его эксплуатации или ее возобновление после ремонта до перехода в предельное состояние.
      • - средний ресурс - математическое ожидание ресурса; для технических систем в качестве критерия долговечности используют технический ресурс;
      • - назначенный ресурс - суммарная наработка, при достижении которой эксплуатация объекта должна быть прекращена независимо от его технического состояния;
      • - гамма-процентный ресурс - суммарная наработка, в течение которой объект не достигнет предельного состояния с заданной вероятностью у, выраженной в процентах.

    Единицы для измерения ресурса выбирают применительно к каждой отрасли и к каждому классу машин, агрегатов и конструкций отдельно.

    Комплексные показатели надежности. Показателем, определяющим долговечность системы, объекта, машины, может служить коэффициент технического использования.

    Коэффициент технического использования - отношение математического ожидания суммарного времени пребывания объекта в работоспособном состоянии за некоторый период эксплуатации к математическому ожиданию суммарного времени пребывания объекта в работоспособном состоянии и всех простоев для ремонта и технического обслуживания. Коэффициент технического использования, взятый за период между плановыми ремонтами и техническим обслуживанием, называется коэффициентом готовности, который оценивает непредусмотренные остановки машины и что плановые ремонты и мероприятия по техническому обслуживанию не полностью выполняют свою роль.

    Показателем надежности невосстанавливаемого элемента или всей системы является вероятность безотказной работы P(t) за заданное время / или функция надежности, которая является функцией, обратной функции распределения:

    P(t) = l-F(t) = P(r>t),

    где Р(/) - вероятность отказа элемента до момента /; т - время работы невосстанавливаемого элемента.

    Графически функция надежности представляет собой монотонно убывающую кривую (рис. 6.7); при / = О Р{1 = 0) = 1, при / -«о Р(1 = оо) = 0.

    Рис. 6.7.

    В общем виде вероятность безотказной работы Р(0 испытуемых элементов конструкций определяется как отношение числа элементов оставшихся исправными в конце времени испытания к начальному числу элементов поставленных на испытание:

    />(*) = (ЛГ - „)/#,

    где N - начальное число испытуемых элементов; п - число отказавших элементов за V, N - п = п 0 - число элементов, сохранивших работоспособность.

    Величина P(t) и вероятность появления отказа F(t) в момент времени t связаны соотношением

    P(t) + F(t)-,

    откуда F(t) = l- P(t) или F(t) = -n 0 / N.

    Причина возникновения внезапных отказов не связана с изменением состояния объекта и временем его предыдущей работы, а зависит от уровня внешних воздействий. Внезапные отказы оцениваются интенсивностью отказов А(0 - вероятностью возникновения отказа в единицу времени при условии, что до этого момента времени отказ не возник. В общем виде вероятность безотказной работы можно выразить через интенсивность отказов А.(/):

    P(t) = exp

    Показатель А(0 измеряется числом отказов в единицу времени (ч "). С помощью данного выражения можно получить формулу для вероятности безотказной работы любого элемента технической системы при любом известном распределении времени наработки на отказ. Функция А(/) может быть определена по результатам испытаний. Многочисленные опытные данные показывают, что для многих элементов график функции А(7) имеет «корытообразный» вид (рис. 6.8).


    Рис. 6.8.

    от наработки /

    Анализ графика показывает, что время испытания можно условно разбить на три периода. В первом из них функция А(/) имеет повышенные значения. Это период приработки или период ранних отказов для скрытых дефектов. Второй период называют периодом нормальной работы. Для этого периода характерна постоянная интенсивность отказов. Последний, третий период - это период старения. Так как период нормальной работы является основным, то в расчетах надежности принимается k(t) - const. В этом случае при экспоненциальном законе распределения функция надежности имеет вид:

    P = ехр

    Р(/) = ехр[-(?1, + А. 2

    Одной из важнейших характеристик безотказности системы является среднее время «жизни» объекта, которое вычисляют, используя выражение:

    г 0 =|р(^ = / ех р(-М Л =т-0 0 ^

    Поэтому функцию надежности можно записать и так:

    / 5 (/) = ехр(-/ / Г 0).

    Если время работы элемента мало по сравнению со средним временем «жизни», то можно использовать приближенную формулу:

    Для случая экспоненциального распределения среднее время «жизни» системы равно

    А,] + А, + ... + А. ((

    Пример 6.4. Определить среднее время «жизни» системы за период времени I = 10 ч, если известно, что система состоит из пяти элементов с соответствующими интенсивностями отказов, ч- 1: ^ = 2 10 э; к 2 = 5 10" 5 ; Х, 3 = 10" 5 ; Х, 4 = 20 КГ 5 ; А-5 - 50 10" 5 . Результатами испытаний установлено, что распределение наработки на отказ подчиняется экспоненциальному закону.

    Решение. С учетом экспоненциального закона распределения наработки на отказ определим вероятность безотказной работы:

    /’(?) = ехр «1-(Я, + Я, 2 + А, 3 + А. 4 + Я. 5)г =

    1 -(2 + 5 + 1 + 20 + 50)10“ 5 -10 = 0,992.

    При тех же условиях определяем среднее время «жизни» системы:

    • 1 I А/л I *« I А/
    • 1 1 п
    • 1/(2+ 5 + 1+ 20+ 50)10~ 5 =10 5 /78 = 1282 ч.

    Предварительные замечания

    В основу перечня положен ГОСТ 27.002-89 "Надежность в технике. Основные понятия. Термины и определения", формулирующий применяемые в науке и технике термины и определения в области надежности. Однако не все термины охватываются указанным ГОСТом, поэтому в отдельных пунктах введены дополнительные термины, отмеченные "звездочкой" (*).

    Объект, элемент, система

    В теории надежности используют понятия объект, элемент, система.

    Объект - техническое изделие определенного целевого назначения, рассматриваемое в периоды проектирования, производства, испытаний и эксплуатации.

    Объектами могут быть различные системы и их элементы, в частности: сооружения, установки, технические изделия, устройства, машины, аппараты, приборы и их части, агрегаты и отдельные детали.
    Элемент системы - объект, представляющий отдельную часть системы. Само понятие элемента условно и относительно, так как любой элемент, в свою очередь, всегда можно рассматривать как совокупность других элементов.

    Понятия система и элемент выражены друг через друга, поскольку одно из них следовало бы принять в качестве исходного, постулировать. Понятия эти относительны: объект, считавшийся системой в одном исследовании, может рассматриваться как элемент, если изучается объект большего масштаба. Кроме того, само деление системы на элементы зависит от характера рассмотрения (функциональные, конструктивные, схемные или оперативные элементы), от требуемой точности проводимого исследования, от уровня наших представлений, от объекта в целом.

    Человек -оператор также представляет собой одно из звеньев системы человек-машина.

    Система - объект, представляющий собой совокупность элементов, связанных между собой определенными отношениями и взаимодействующих таким образом, чтобы обеспечить выполнение системой некоторой достаточно сложной функции.

    Признаком системности является структурированность системы, взаимосвязанность составляющих ее частей, подчиненность организации всей системы определенной цели. Системы функционируют в пространстве и времени.

    Состояние объекта

    Исправность - состояние объекта, при котором он соответствует всем требованиям, установленным нормативно-технической документацией (НТД).

    Неисправность - состояние объекта, при котором он не соответствует хотя бы одному из требований, установленных НТД.

    Работоспособность - состояние объекта, при котором он способен выполнять заданные функции, сохраняя значения основных параметров в пределах, установленных НТД.

    Основные параметры характеризуют функционирование объекта при выполнении поставленных задач и устанавливаются в нормативно-технической документации.

    Неработоспособность - состояние объекта, при котором значение хотя бы одного заданного параметра характеризующего способность выполнять заданные функции, не соответствует требованиям, установленным НТД.

    Понятие исправность шире, чем понятие работоспособность. Работоспособный объект в отличие от исправного удовлетворяет лишь тем требованиям НТД, которые обеспечивают его нормальное функционирование при выполнении поставленных задач.

    Работоспособность и неработоспособность в общем случае могут быть полными или частичными. Полностью работоспособный объект обеспечивает в определенных условиях максимальную эффективность его применения. Эффективность применения в этих же условиях частично работоспособного объекта меньше максимально возможной, но значения ее показателей при этом еще находятся в пределах, установленных для такого функционирования, которое считается нормальным. Частично неработоспособный объект может функционировать, но уровень эффективности при этом ниже допускаемого. Полностью неработоспособный объект применять по назначению невозможно.
    Понятия частичной работоспособности и частичной неработоспособности применяют главным образом к сложным системам, для которых характерна возможность нахождения в нескольких состояниях. Эти состояния различаются уровнями эффективности функционирования системы. Работоспособность и неработоспособность некоторых объектов могут быть полными, т.е. они могут иметь только два состояния.
    Работоспособный объект в отличие от исправного обязан удовлетворять лишь тем требованиям НТД, выполнение которых обеспечивает нормальное применение объекта по назначению. При этом он может не удовлетворять, например, эстетическим требованиям, если ухудшение внешнего вида объекта не препятствует его нормальному (эффективному) функционированию.

    Очевидно, что работоспособный объект может быть неисправным, однако отклонения от требований НТД при этом не настолько существенны, чтобы нарушалось нормальное функционирование.
    Предельное состояние - состояние объекта, при котором его дальнейшее применение по назначению должно быть прекращено из-за неустранимого нарушения требований безопасности или неустранимого отклонения заданных параметров за установленные пределы, недопустимого увеличения эксплуатационных расходов или необходимости проведения капитального ремонта.

    Признаки (критерии) предельного состояния устанавливаются НТД на данный объект.

    Невосстанавливаемый объект достигает предельного состояния при возникновении отказа или при достижении заранее установленного предельно допустимого значения срока службы или суммарной наработки, устанавливаемых из соображений безопасности эксплуатации в связи с необратимым снижением эффективности использования ниже допустимой или в связи с увеличением интенсивности отказов, закономерным для объектов данного типа после установленного периода эксплуатации.
    Для восстанавливаемых объектов переход в предельное состояние определяется наступлением момента, когда дальнейшая эксплуатация невозможна или нецелесообразна вследствие следующих причин:
    - становится невозможным поддержание его безопасности, безотказности или эффективности на минимально допустимом уровне;
    - в результате изнашивания и (или) старения объект пришел в такое состояние, при котором ремонт требует недопустимо больших затрат или не обеспечивает необходимой степени восстановления исправности или ресурса.

    Для некоторых восстанавливаемых объектов предельным состоянием считается такое, когда необходимое восстановление исправности может быть осуществлено только с помощью капитального ремонта.
    Режимная управляемость* - свойство объекта поддерживать нормальный режим посредством управления с целью сохранения или восстановления нормального режима его работы.

    Переход объекта в различные состояния

    Повреждение - событие, заключающееся в нарушении исправности объекта при сохранении его работоспособности.

    Отказ - событие, заключающееся в нарушении работоспособности объекта.

    Критерий отказа - отличительный признак или совокупность признаков, согласно которым устанавливается факт отказа.

    Признаки (критерии) отказов устанавливаются НТД на данный объект.
    Восстановление - процесс обнаружения и устранения отказа (повреждения) с целью восстановления его работоспособности (исправности).

    Восстанавливаемый объект - объект, работоспособность которого в случае возникновения отказа подлежит восстановлению в рассматриваемых условиях.

    Невосстанавливаемый объект - объект, работоспособность которого в случае возникновения отказа не подлежит восстановлению в рассматриваемых условиях.

    При анализе надежности, особенно при выборе показателей надежности объекта, существенное значение имеет решение, которое должно быть принято в случае отказа объекта. Если в рассматриваемой ситуации восстановление работоспособности данного объекта при его отказе по каким-либо причинам признается нецелесообразным или неосуществимым (например, из-за невозможности прерывания выполняемой функции), то такой объект в данной ситуации является невосстанавливаемым. Таким образом, один и тот же объект в зависимости от особенностей или этапов эксплуатации может считаться восстанавливаемым или невосстанавливаемым. Например, аппаратура метеоспутника на этапе хранения относится к восстанавливаемой, а во время полета в космосе - невосстанавливаемой. Более того, даже один и тот же объект можно отнести к тому или иному типу в зависимости от назначения: ЭВМ, используемая для неоперативных вычислений, является объектом восстанавливаемым, так как в случае отказа любая операция может быть повторена, а та же ЭВМ, управляющая сложным технологическим процессом в химии, является объектом невосстанавливаемым, так как отказ или сбой приводит к непоправимым последствиям.
    Авария* - событие, заключающееся в переходе объекта с одного уровня работоспособности или относительного уровня функционирования на другой, существенно более низкий, с крупным нарушением режима работы объекта. Авария может привести к частичному или полному разрушению объекта, созданию опасных условий для человека и окружающей среды.

    Временные характеристики объекта

    Наработка - продолжительность или объем работы объекта. Объект может работать непрерывно или с перерывами. Во втором случае учитывается суммарная наработка. Наработка может измеряться в единицах времени, циклах, единицах выработки и др. единицах. В процессе эксплуатации различают суточную, месячную наработку, наработку до первого отказа, наработку между отказами, заданную наработку и т.д.
    Если объект эксплуатируется в различных режимах нагрузки, то, например, наработка в облегченном режиме может быть выделена и учитываться отдельно от наработки при номинальной нагрузке.

    Технический ресурс - наработка объекта от начала его эксплуатации до достижения предельного состояния.

    Обычно указывается, какой именно технический ресурс имеется в виду: до среднего, капитального, от капитального до ближайшего среднего и т.п. Если конкретного указания не содержится, то имеется в виду ресурс от начала эксплуатации до достижения предельного состояния после всех (средних и капитальных) ремонтов, т.е. до списания по техническому состоянию.

    Срок службы - календарная продолжительность эксплуатации объекта от ее начала или возобновления после капитального или среднего ремонта до наступления предельного состояния.

    Под эксплуатацией объекта понимается стадия его существования в распоряжении потребителя при условии применения объекта по назначению, что может чередоваться с хранением, транспортированием, техническим обслуживанием и ремонтом, если это осуществляется потребителем.

    Срок сохраняемости - календарная продолжительность хранения и (или) транспортирования объекта в заданных условиях, в течение и после которой сохраняются значения установленных показателей (в том числе и показателей надежности) в заданных пределах.

    Определение надежности
    Работа любой технической системы может характеризоваться ее эффективностью (рис. 4.1.1), под которой понимается совокупность свойств, определяющих способность системы выполнять при ее создании определенные задачи.

    Рис. 4.1.1. Основные свойства технических систем

    В соответствии с ГОСТ 27.002-89 под надежностью понимают свойство объекта сохранять во времени в установленных пределах значения всех параметров, характеризующих способность выполнять требуемые функции в заданных режимах и условиях применения, технического обслуживания, ремонтов, хранения и транспортировки.

    Таким образом:
    1. Надежность - свойство объекта сохранять во времени способность выполнять требуемые функции. Например: для электродвигателя - обеспечивать требуемые момент на валу и скорость; для системы электроснабжения - обеспечивать электроприемники энергией требуемого качества.

    2. Выполнение требуемых функций должно происходить при значениях параметров в установленных пределах. Например: для электродвигателя - обеспечивать требуемые момент и скорость при температуре двигателя, не превышающей определенного предела, отсутствии выделения источника взрыва, пожара и т.д.

    3. Способность выполнять требуемые функции должна сохраняться в заданных режимах (например, в повторно-кратковременном режиме работы); в заданных условиях (например, в условиях запыленности, вибрации и т.д.).

    4. Объект должен обладать свойством сохранять способность выполнять требуемые функции в различные фазы его жизни: при рабочей эксплуатации, техническом обслуживании, ремонте, хранении и транспортировке.

    Надежность - важный показатель качества объекта. Его нельзя ни противопоставлять, ни смешивать с другими показателями качества. Явно недостаточной, например, будет информация о качестве очистительной установки, если известно только то, что она обладает определенной производительностью и некоторым коэффициентом очистки, но неизвестно, насколько устойчиво сохраняются эти характеристики при ее работе. Бесполезна также информация о том, что установка устойчиво сохраняет присущие ей характеристики, но неизвестны значения этих характеристик. Вот почему в определение понятия надежности входит выполнение заданных функций и сохранение этого свойства при использовании объекта по назначению.

    В зависимости от назначения объекта оно может включать в себя в различных сочетаниях безотказность, долговечность, ремонтопригодность, сохраняемость. Например, для невосстанавливаемого объекта, не предназначенного для хранения, надежность определяется его безотказностью при использовании по назначению. Информация о безотказности восстанавливаемого изделия, длительное время находящегося в состоянии хранения и транспортировки, не в полной мере определяет его надежность (при этом необходимо знать и о ремонтопригодности, и сохраняемости). В ряде случаев очень важное значение приобретает свойство изделия сохранять работоспособность до наступления предельного состояния (снятие с эксплуатации, передача в средний или капитальный ремонт), т.е. необходима информация не только о безотказности объекта, но и о его долговечности.

    Техническая характеристика, количественным образом определяющая одно или несколько свойств, составляющих надежность объекта именуется показатель надежности. Он количественно характеризует, в какой степени данному объекту или данной группе объектов присущи определенные свойства, обусловливающие надежность. Показатель надежности может иметь размерность (например, среднее время восстановления) или не иметь ее (например, вероятность безотказной работы).

    Надежность в общем случае - комплексное свойство, включающее такие понятия, как безотказность, долговечность, ремонтопригодность, сохраняемость. Для конкретных объектов и условий их эксплуатации эти свойства могут иметь различную относительную значимость.

    Безотказность - свойство объекта непрерывно сохранять работоспособность в течение некоторой наработки или в течение некоторого времени.

    Ремонтопригодность - свойство объекта быть приспособленным к предупреждению и обнаружению отказов и повреждений, к восстановлению работоспособности и исправности в процессе технического обслуживания и ремонта.

    Долговечность - свойство объекта сохранять работоспособность до наступления предельного состояния с необходимым прерыванием для технического обслуживания и ремонтов.

    Сохраняемость - свойство объекта непрерывно сохранять исправное и работоспособное состояние в течение (и после) хранения и (или) транспортировки.

    Для показателей надежности используются две формы представления: вероятностная и статистическая. Вероятностная форма обычно бывает удобнее при априорных аналитических расчетах надежности, статистическая - при экспериментальном исследовании надежности технических систем. Кроме того, оказывается, что одни показатели лучше интерпретируются в вероятностных терминах, а другие - в статистических.

    Показатели безотказности и ремонтопригодности
    Наработка до отказа - вероятность того, что в пределах заданной наработки отказ объекта не возникнет (при условии работоспособности в начальный момент времени).
    Для режимов хранения и транспортировки может применяться аналогично определяемый термин "вероятность возникновения отказа".

    Средняя наработка до отказа - математическое ожидание случайной наработки объекта до первого отказа.
    Средняя наработка между отказами - математическое ожидание случайной наработки объекта между отказами.

    Обычно этот показатель относится к установившемуся процессу эксплуатации. В принципе средняя наработка между отказами объектов, состоящих из стареющих во времени элементов, зависит от номера предыдущего отказа. Однако с ростом номера отказа (т.е. с увеличением длительности эксплуатации) эта величина стремится к некоторой постоянной, или, как говорят, к своему стационарному значению.
    Средняя наработка на отказ - отношение наработки восстанавливаемого объекта за некоторый период времени к математическому ожиданию числа отказов в течение этой наработки.

    Этим термином можно назвать кратко среднюю наработку до отказа и среднюю наработку между отказами, когда оба показателя совпадают. Для совпадения последних необходимо, чтобы после каждого отказа объект восстанавливался до первоначального состояния.

    Заданная наработка - наработка, в течение которой объект должен безотказно работать для выполнения своих функций.

    Среднее время простоя - математическое ожидание случайного времени вынужденного нерегламентированного пребывания объекта в состоянии неработоспособности.

    Среднее время восстановления - математическое ожидание случайной продолжительности восстановления работоспособности (собственно ремонта).

    Вероятность восстановления - вероятность того, что фактическая продолжительность восстановления работоспособности объекта не превысит заданной.

    Показатель технической эффективности функционирования - мера качества собственно функционирования объекта или целесообразности использования объекта для выполнения заданных функций.
    Этот показатель определяется количественно как математическое ожидание выходного эффекта объекта, т.е. в зависимости от назначения системы принимает конкретное выражение. Часто показатель эффективности функционирования определяется как полная вероятность выполнения объектом задачи с учетом возможного снижения качества его работы из-за возникновения частичных отказов.

    Коэффициент сохранения эффективности - показатель, характеризующий влияние степени надежности к максимально возможному значению этого показателя (т.е. соответствующему состоянию полной работоспособности всех элементов объекта).

    Нестационарный коэффициент готовности - вероятность того, что объект окажется работоспособным в заданный момент времени, отсчитываемый от начала работы (или от другого строго определенного момента времени), для которого известно начальное состояние этого объекта.

    Средний коэффициент готовности - усредненное на заданном интервале времени значение нестационарного коэффициента готовности.

    Стационарный коэффициент готовности (коэффициент готовности) - вероятность того, что восстанавливаемый объект окажется работоспособным в произвольно выбранный момент времени в установившемся процессе эксплуатации. (Коэффициент готовности может быть определен и как отношение времени, в течение которого объект находится в работоспособном состоянии, к общей длительности рассматриваемого периода. Предполагается, что рассматривается установившийся процесс эксплуатации, математической моделью которого является стационарный случайный процесс. Коэффициент готовности является предельным значением, к которому стремятся и нестационарный, и средний коэффициенты готовности с ростом рассматриваемого интервала времени.

    Часто используются показатели, характеризующие простой объект, - так называемые коэффициенты простоя соответствующего типа. Каждому коэффициенту готовности можно поставить в соответствие определенный коэффициент простоя, численно равный дополнению соответствующего коэффициента готовности до единицы. В соответствующих определениях работоспособность следует заменить на неработоспособность.

    Нестационарный коэффициент оперативной готовности - вероятность того, что объект, находясь в режиме ожидания, окажется работоспособным в заданный момент времени, отсчитываемый от начала работы (или от другого строго определенного времени), и начиная с этого момента времени будет работать безотказно в течение заданного времени.

    Средний коэффициент оперативной готовности - усредненное на заданном интервале значение нестационарного коэффициента оперативной готовности.

    Стационарный коэффициент оперативной готовности (коэффициент оперативной готовности) - вероятность того, что восстанавливаемый элемент окажется работоспособным в произвольный момент времени, и с этого момента времени будет работать безотказно в течение заданного интервала времени.
    Предполагается, что рассматривается установившийся процесс эксплуатации, которому соответствуют в качестве математической модели стационарный случайный процесс.

    Коэффициент технического использования - отношение средней наработки объекта в единицах времени за некоторый период эксплуатации к сумме средних значений наработки, времени простоя, обусловленного техническим обслуживанием, и времени ремонтов за тот же период эксплуатации.

    Интенсивность отказов - условная плотность вероятности отказа невосстанавливаемого объекта, определяемая для рассматриваемого момента времени при условии, что до этого момента отказ не возник.
    Параметр потока отказов - плотность вероятности возникновения отказа восстанавливаемого объекта, определяемая для рассматриваемого момента времени.

    Параметр потока отказа может быть определен как отношение числа отказов объекта за определенный интервал времени к длительности этого интервала при ординарном потоке отказов.

    Интенсивность восстановления - условная плотность вероятности восстановления работоспособности объекта, определенная для рассматриваемого момента времени, при условии, что до этого момента восстановление не было завершено.

    Показатели долговечности и сохраняемости

    Гамма-процентный ресурс - наработка, в течение которой объект не достигает предельного состояния с заданной вероятностью 1- ?.

    Средний ресурс - математическое ожидание ресурса.

    Назначенный ресурс - суммарная наработка объекта, при достижении которой эксплуатация должна быть прекращена независимо от его состояния.

    Средний ремонтный ресурс - средний ресурс между смежными капитальными ремонтами объекта.

    Средний ресурс до списания - средний ресурс объекта от начала эксплуатации до его списания.

    Средний ресурс до капитального ремонта средний ресурс от начала эксплуатации объекта до его первого капитального ремонта.

    Гамма-процентный срок службы - срок службы, в течение которого объект не достигает предельного состояния с вероятностью 1- ?.

    Средний срок службы - математическое ожидание срока службы.

    Средний межремонтный срок службы - средний срок службы между смежными капитальными ремонтами объекта.

    Средний срок службы до капитального ремонта - средний срок службы от начала эксплуатации объекта до его первого капитального ремонта.

    Средний срок службы до списания - средний срок службы от начала эксплуатации объекта до его списания.

    Гамма-процентный срок сохраняемости - продолжительность хранения, в течение которой у объекта сохраняются установленные показатели с заданной вероятностью 1- ?.

    Средний срок сохраняемости - математическое ожидание срока сохраняемости.

    Виды надежности

    Многоцелевое назначение оборудования и систем приводит к необходимости исследовать те или другие стороны надежности с учетом причин, формирующих надежностные свойства объектов. Это приводит к необходимости подразделения надежности на виды.

    Различают:
    - аппаратурную надежность, обусловленную состоянием аппаратов; в свою очередь она может подразделяться на надежность конструктивную, схемную, производственно-технологическую;
    - функциональную надежность, связанную с выполнением некоторой функции (либо комплекса функций), возлагаемых на объект, систему;
    - эксплуатационную надежность, обусловленную качеством использования и обслуживания;
    - программную надежность, обусловленную качеством программного обеспечения (программ, алгоритмов действий, инструкций и т.д.);
    - надежность системы "человек-машина", зависящую от качества обслуживания объекта человеком-оператором.

    Характеристики отказов

    Одним из основных понятий теории надежности является понятие отказа (объекта, элемента, системы).
    Отказ объекта - событие, заключающееся в том, что объект полностью или частично перестает выполнять заданные функции. При полной потере работоспособности возникает полный отказ, при частичной - частичный. Понятия полного и частичного отказов каждый раз должны быть четко сформулированы перед анализом надежности, поскольку от этого зависит количественная оценка надежности.

    По причинам возникновения отказов в данном месте различают:
    отказы из-за конструктивных дефектов;
    отказы из-за технологических дефектов;
    отказы из-за эксплуатационных дефектов;
    отказы из-за постепенного старения (износа).
    Отказы вследствие конструктивных дефектов возникают как следствие несовершенства конструкции из-за "промахов" при конструировании. В этом случае наиболее распространенными являются недоучет "пиковых" нагрузок, применение материалов с низкими потребительскими свойствами, схемные "промахи" и др. Отказы этой группы сказываются на всех экземплярах изделия, объекта, системы.
    Отказы из-за технологических дефектов возникают как следствие нарушения принятой технологии изготовления изделий (например, выход отдельных характеристик за установленные пределы). Отказы этой группы характерны для отдельных партий изделий, при изготовлении которых наблюдались нарушения технологии изготовления.

    Отказы из-за эксплуатационных дефектов возникают по причине несоответствия требуемых условий эксплуатации, правил обслуживания действительным. Отказы этой группы характерны для отдельных экземпляров изделий.

    Отказы из-за постепенного старения (износа) вследствие накопления необратимых изменений в материалах, приводящих к нарушению прочности (механической, электрической), взаимодействия частей объекта.

    Отказы по причинным схемам возникновения подразделяются на следующие группы:
    отказы с мгновенной схемой возникновения;
    отказы с постепенной схемой возникновения;
    отказы с релаксационной схемой возникновения;
    отказы с комбинированными схемами возникновения.
    Отказы с мгновенной схемой возникновения характеризуются тем, что время наступления отказа не зависит от времени предшествующей эксплуатации и состояния объекта, момент отказа наступает случайно, внезапно. Примерами реализации такой схемы могут служить отказы изделий под действием пиковых нагрузок в электрической сети, механическое разрушение посторонним внешним воздействием и т.п.
    Отказы с постепенной схемой возникновения происходят за счет постепенного накопления вследствие физико-химических изменений в материалах повреждений. При этом значения некоторых "решающих" параметров выходят за допустимые границы и объект (система) не способен выполнять заданные функции. Примерами реализации постепенной схемы возникновения могут служить отказы вследствие снижения сопротивления изоляции, электрической эрозии контактов и т.п.

    Отказы с релаксационной схемой возникновения характеризуются первоначальным постепенным накоплением повреждений, которые создают условия для скачкообразного (резкого) изменения состояния объекта, после которого возникает отказное состояние. Примерами реализации релаксационной схемы возникновения отказов могут служить пробой изоляции кабеля вследствие коррозионного разрушения брони.

    Отказы с комбинированными схемами возникновения характерны для ситуаций, когда одновременно действуют несколько причинных схем. Примером, реализующим эту схему, может служить отказ двигателя в результате короткого замыкания по причинам снижения сопротивления изоляции обмоток и перегрева.
    При анализе надежности необходимо выявлять преобладающие причины отказов и лишь затем, если в этом есть необходимость, учитывать влияние остальных причин.

    По временному аспекту и степени предсказуемости отказы подразделяются на внезапные и постепенные.
    По характеру устранения с течением времени различают устойчивые (окончательные) и самоустраняющиеся (кратковременные) отказы. Кратковременный отказ называется сбоем. Характерный признак сбоя - то, что восстановление работоспособности после его возникновения не требует ремонта аппаратуры. Примером может служить кратковременно действующая помеха при приеме сигнала, дефекты программы и т.п.
    Для целей анализа и исследования надежности причинные схемы отказов можно представить в виде статистических моделей, которые вследствие вероятностного возникновения повреждений описываются вероятностными законами.

    Виды отказов и причинные связи

    Отказы элементов систем являются основными предметами исследования при анализе причинных связей.
    Как показано во внутреннем кольце (рис.4.1.2), расположенном вокруг "отказа элементов", отказы могут возникать в результате:
    1) первичных отказов;
    2) вторичных отказов;
    3) ошибочных команд (инициированные отказы).

    Отказы всех этих категорий могут иметь различные причины, приведенные в наружном кольце. Когда точный вид отказов определен и данные по ним получены, а конечное событие является критическим, то они рассматриваются как исходные отказы.

    Первичный отказ элемента определяют как нерабочее состояние этого элемента, причиной которого является он сам, и необходимо выполнить ремонтные работы для возвращения элемента в рабочее состояние. Первичные отказы происходят при входных воздействиях, значение которых находится в пределах, лежащих в расчетном диапазоне, а отказы объясняются естественным старением элементов. Разрыв резервуара вследствие старения (усталости) материала служит примером первичного отказа.
    Вторичный отказ - такой же, как первичный, за исключением того, что сам элемент не является причиной отказа. Вторичные отказы объясняются воздействием предыдущих или текущих избыточных напряжений на элементы. Амплитуда, частота, продолжительность действия этих напряжений могут выходить за пределы допусков или иметь обратную полярность и вызываются различными источниками энергии: термической, механической, электрической, химической, магнитной, радиоактивной и т.п. Эти напряжения вызываются соседними элементами или окружающей средой, например - метеорологическими (ливень, ветровая нагрузка), геологическими условиями (оползни, просадка грунтов), а также воздействием со стороны других технических систем.

    Рис. 4.1.2. Характеристики отказов элементов

    Примером вторичных отказов служит "срабатывание предохранителя от повышенного электрического тока", "повреждение емкостей для хранения при землетрясении". Следует отметить, что устранение источников повышенных напряжений не гарантирует возвращение элемента в рабочее состояние, так как предыдущая перегрузка могла вызвать необратимое повреждение в элементе, требующее в этом случае ремонта.
    Инициированные отказы (ошибочные команды). Люди, например, операторы и обслуживающий технический персонал, также являются возможными источниками вторичных отказов, если их действия приводят к выходу элементов из строя. Ошибочные команды представляются в виде элемента, находящегося в нерабочем состоянии из-за неправильного сигнала управления или помех (при этом лишь иногда требуется ремонт для возвращения данного элемента в рабочее состояние). Самопроизвольные сигналы управления или помехи часто не оставляют последствий (повреждений), и в нормальных последующих режимах элементы работают в соответствии с заданными требованиями. Типичными примерами ошибочных команд являются: "напряжение приложено самопроизвольно к обмотке реле", "переключатель случайно не разомкнулся из-за помех", "помехи на входе контрольного прибора в системе безопасности вызвали ложный сигнал на остановку", "оператор не нажал на аварийную кнопку" (ошибочная команда от аварийной кнопки).

    Множественный отказ (отказы общего характера) есть событие, при котором несколько элементов выходят из строя по одной и той же причине. К числу таких причин могут быть отнесены следующие:
    - конструкторские недоработки оборудования (дефекты, не выявленные на стадии проектирования и приводящие к отказам вследствие взаимной зависимости между электрическими и механическими подсистемами или элементами избыточной системы);
    - ошибки эксплуатации и технического обслуживания (неправильная регулировка или калибровка, небрежность оператора, неправильное обращение и т. п.);
    - воздействие окружающей среды (влага, пыль, грязь, температура, вибрация, а также экстремальные режимы нормальной эксплуатации);
    - внешние катастрофические воздействия (естественные внешние явления, такие, как наводнение, землетрясение, пожар, ураган);
    - общий изготовитель (резервируемое оборудование или его компоненты, поставляемые одним и тем же изготовителем, могут иметь общие конструктивные или производственные дефекты. Например, производственные дефекты могут быть вызваны неправильным выбором материала, ошибками в системах монтажа, некачественной пайкой и т. п.);
    - общий внешний источник питания (общий источник питания для основного и резервного оборудования, резервируемых подсистем и элементов);
    - неправильное функционирование (неверно выбранный комплекс измерительных приборов или неудовлетворительно спланированные меры защиты).

    Известен целый ряд примеров множественных отказов: так, некоторые параллельно соединенные пружинные реле выходили из строя одновременно и их отказы были вызваны общей причиной; вследствие неправильного расцепления муфт при техническом обслуживании два клапана оказались установлены в неправильное положение; из-за разрушения паропровода имели место сразу несколько отказов коммутационного щита. В некоторых случаях общая причина вызывает не полный отказ резервированной системы (одновременный отказ нескольких узлов, т.е. предельный случай), а менее серьезное общее понижение надежности, что приводит к повышению вероятности совместного отказа узлов систем. Такое явление наблюдается в случае исключительно неблагоприятных окружающих условий, когда ухудшение характеристик приводит к отказу резервного узла. Наличие общих неблагоприятных внешних условий приводит к тому, что отказ второго узла зависит от отказа первого и спарен с ним.

    Для каждой общей причины необходимо определить все вызываемые ею исходные события. При этом определяют сферу действия каждой общей причины, а также место расположения элементов и время происшествия. Некоторые общие причины имеют лишь ограниченную сферу действия. Например, утечка жидкости может ограничиваться одним помещением, и электрические установки, их элементы в других помещениях не будут повреждены вследствие утечек, если только эти помещения не сообщаются друг с другом.

    Отказ считают по сравнению с другим более критичным, если его предпочтительнее рассматривать в первую очередь при разработке вопросов надежности и безопасности. При сравнительной оценке критичности отказов учитывают последствия отказа, вероятность возникновения, возможность обнаружения, локализации и т.д.

    Указанные выше свойства технических объектов и промышленная безопасность - взаимосвязаны. Так, при неудовлетворительной надежности объекта вряд ли следует ожидать хороших показателей по его безопасности. В то же время, перечисленные свойства имеют свои самостоятельные функции. Если при анализе надежности изучается способность объекта выполнять заданные функции (при определенных условиях эксплуатации) в установленных пределах, то при оценке промышленной безопасности выявляют причинно-следственные связи возникновения и развития аварий и других нарушений с всесторонним анализом последствий этих нарушений.