Основные факторы почвообразования. Почвообразовательный процесс протекает под влиянием внешних по отношению к почве природных условий – факторов почвообразования. Факторы почвообразования следует разделить на два типа: природные (естественные) и антропогенные (искусственные). Выделяют шесть природных факторов почвообразования: материнские, или почвообразующие горные породы; климат; рельеф; растения и живые организмы; время. Все природные факторы являются равнозначными. Каждый из них оказывает свое специфическое влияние на почвообразование и без участия какого-либо из них почвообразование невозможно. Горные породы , из которых формируется почва, называются почвообразующими, или материнскими. По условиям образования их подразделяют на три группы: магматические, метаморфические и осадочные. Магматические породы образуются при застывании силикатного расплава магмы внутри земной коры (интрузивные) или на ее поверхности (эффузивные). Эти породы имеют кристаллическое строение, плотное сложение (плотность 2,6-3,3 г/см 3) и поэтому их называют еще массивно-кристаллические. К широко распространенным представителям интрузивных пород относятся диориты, граниты, габбро, дуниты и др., к эффузивным - базальты, андезиты и др. Магматические породы состоят главным образом из соединений кремния, алюминия, железа, магния, кальция, калия и натрия. В зависимости от соотношений соединений кремния, калия и натрия - с одной стороны, и железа, кальция и магния - с другой, различают магматические породы кислые и основные. Кислые почвообразующие породы (граниты, липариты, пегматиты) имеют высокое содержание кремнезема (более 63% Si02). Они имеют светлую и буроватую окраску с хорошо выраженными кристаллами кварца, полевых шпатов, слюд. Почвы, образующиеся из кислых пород, содержат гравий, песчаные частицы разного размера и поэтому имеют рыхлое сложение, хорошо обеспечены калием, но у них, как правило, повышенная кислотность, недостаточное количество оснований и невысокое плодородие. Основные магматические породы (базальты, периодиты, дуниты, габбро) характеризуются низким содержанием Si02 (40-60%). Они имеют темную окраску в связи с повышенным содержанием темноцветных минералов. Почвы, формирующиеся на продуктах выветривания основных пород, отличаются щелочной и нейтральной реакцией, содержат много оснований, гумуса и обладают повышенным плодородием. Магматические породы составляют 95% общей массы пород, слагающих литосферу, но в качестве почвообразующих они занимают небольшие площади, главным образом в горных областях. Метаморфические горные породы. Метаморфические горные породы - вторичные массивнокристаллические породы, образовавшиеся в недрах Земли в результате перекристаллизации магматических и осадочных пород под действием высоких давлений и температур. К ним относятся гнейсы, мрамор, кварциты и др. Они состоят из минералов группы силикатов, алюмосиликатов, карбонатов. В качестве почвообразующих метаморфические горные породы занимают небольшие площади. Гнейсы по свойствам близки к гранитам. На продуктах выветривания сланцев и мрамора формируются почвы, обогащенные основаниями, с повышенным уровнем плодородия. Осадочные горные породы. Формирование осадочных горных пород обусловлено процессами выветривания магматических и метаморфических пород, переносом продуктов выветривания водными, ледниковыми и воздушными потоками и отложением на поверхности суши, на дне морей, океанов, озер, в поймах рек. По происхождению они подразделяются на морские и континентальные. По возрасту осадочные породы подразделяются на древние и четвертичные. Четвертичные отложения образовались в последние 1,5-2 млн лет и продолжают формироваться в настоящее время. Четвертичные осадочные породы характеризуются рыхлым сложением, невысокой плотностью, сложены частицами разного размера и разной степени окатанности: валуны, галечники, пески, суглинки и др. Элювий (вымываю). Элювием называют континентальные геологические образования, возникшие в результате сильного изменения и разрушения горных пород на месте их первичного залегания. К элювию относят продукты выветривания горных пород, сохраняющие реликтовые структурные и петрографические признаки, генетическую связь и непрерывность последовательности перехода к исходным породам. В щелочной среде возникает карбонатный элювий типа мергелей, лесса, лессовидных пород, засоленных грунтов и т. д. Нередко в верхних горизонтах элювий кислый, так как вода здесь обогащена углекислым газом, а книзу происходит нейтрализация углекислоты и нарастает щелочная реакция. В холодном климате наблюдается выраженное оглеение и ожелезнение – формирование мощных сизо-серых, вязких, глиноподобных масс и болотных охристо-желтых образований. В умеренном климате накапливаются красно- и желто-бурые глины и суглинки, а в условиях континентально-умеренного пояса при некоторой засушливости образуется карбонатный палево-желтый лессовидный элювий, иногда гипсоносный и обогащенный легкорастворимыми солями. Соли местами имеют тенденцию к накоплению в поверхностных горизонтах элювиальных толщ. Во влажном климате, наоборот, растворимые соли выщелачиваются и накапливается кремнезем. Делювий (смываю) – генетический тип континентальных отложений, образующихся на склонах в результате смыва и отложения разрушенных выветриванием горных пород. Делювиальные отложения – это разнообразные по цвету и механическому составу, обычно пористые, образования, обязанные происхождением деятельности переменных по силе, мощности времени действия струйчатых водных потоков, которые не имеют определенных русл, а развиваются на склонах и производят смыв и отложение осадков на склонной поверхности. По механическому составу делювий в основной массе представлен в большинстве случаев средними суглинками. Мощный песчаный делювий на широких склонах при относительно малом стоке воды не возникает, так как выпадающие осадки успевают фильтроваться в песчаные породы, не стекая по поверхности склона. Там, где идет разрушение твердых пород, в делювий поступает крупнообломочный материал в виде брекчии и щебня, часто слагающего целые горизонты в основании делювиальных толщ. Аллювий (от латинского alluvio – намываю) – генетический тип континентальных рыхлых слоистых песчано-глинистых речных, дельтовых, овражно-балочных и озерных отложений. Типичный, широко распространенный речной аллювий образуется в результате миграции водных потоков в пределах речных долин. Он дифференцируется на два яруса отложений: а) верхний – собственно пойменные, песчано-глинистые, относительно горизонта слоистые отложения с разнообразными ископаемыми почвами. Формируется в период разлива полых вод. В составе пойменных отложений закономерно залегает старичный аллювий; б) нижний – русловые песчано-галечниковые, часто косослоистые отложения с ориентированными гальками и валунами в основании; образуются в русле в условиях миграции потока; залегают в основании эрозионной выемки, на «плотике».Верхний и нижний ярусы генетически тесно связаны между собой, составляя единый аллювиальный комплекс, часто осложненный происходившими изменениями базисов эрозии в период формирования этого комплекса. У основания склонов коренных берегов речных долин формируются смешанные аллювиально-делювиальные отложения. Аллювий равнинных рек характеризуется хорошо выраженным полным аллювиальным комплексом отложений. В долинах горных рек доминирует русловый галечниковый аллювий. В овражно-балочных долинах с выраженным профилем равновесия преобладает пойменный аллювий. В дельтах рек формируется озерно-речной и пресноводно-морской аллювий. Различают новейший аллювий – массивов современных пойм и древний аллювий, слагающий речные террасы, сформированный в период их пойменной стадии. Генетически близки к аллювию флювиогляциальные отложения, образованные мощными потоками талых вод ледника. Аллювий служит материнской породой в поймах и надпойменных террасах. Пролювий (от латинского proluo – сношу) впервые выделен А.П. Павловым как особый генетический тип геологических отложений. Он возникает на склонах гор, в области конусов выноса и в устьевых частях горных оврагов в результате деятельности повторяющихся ливневых водотоков. Пролювий склонов и конусов выноса состоит из обломков горных пород разной крупности: от щебня, галечника и гравия до песчано-пылеватых и глинистых осадков включительно. По шлейфам склонов и периферии обширных конусов выноса образуются лессовидные и глинистые пролювиальные отложения. Пролювий горных склонов по генезису приближается к делювию, а отложения конусов выноса близко стоят к овражному аллювию. Поэтому правильнее считать первый разновидностью делювия, а второй – разновидностью аллювия. Почвообразующая порода является той основой, из которой формируется почва. Минеральная часть в подавляющем большинстве почв составляет 90 –95% почвенной массы. Выделяют две основные функции материнской горной породы в почвообразовании: формирование состава почвенных масс и подстилающей породы. Состав горных пород определяет химический, минералогический, гранулометрический состав будущих почв, например, наиболее богатые почвы формируются на карбонатных суглинках, а на песках они беднее, однако теплее и лучше аэрированы. Порода в значительной степени определяет и скорость почвообразования. Материнские породы на территории России большей частью представлены четвертичными осадочными смешанными горными породами. Климатический фактор определяет обеспеченность почвообразования влагой (атмосферные осадки) и энергией (солнечная радиация – свет и тепло). Климат на различных широтах земного шара различен. Различают арктический, субарктический, умеренный, субтропический и тропический климат. В соответствии с климатическими условиями различают и растительные зоны, отличающиеся количеством растительного органического вещества, и, соответственно, скоростью и продолжительностью биологического круговорота и тип процесса почвообразования. Благоприятные для жизни гидротермические условия обеспечивают протекание в почве процессов, влияют на сообщества растительных и животных организмов, увеличивая их продуктивность, что в конечном итоге влияет на интенсивность почвообразования. Известно, что при повышении температуры на 10 о С скорость химических реакций увеличивается в 2–4 раза (правило Вант-Гоффа. Водный режим географических поясов определяют по отношению среднегодовой суммы осадков к годовой испаряемости – так называемый коэффициент увлажнения (КУ) Г.Н. Высоцкого-Н.Н. Иванова. Он является наиболее объективным показателем атмосферного увлажнения. При КУ >1 увлажнение избыточное (наблюдается в высоких широтах – примерно к северу и к югу от 50-й параллели), а при КУ<1 – недостаточное увлажнение (например, в пустынях КУ практически приближается к нулю). Рельеф определяется характером чередования пониженных и повышенных участков суши. Различают три вида рельефа: микрорельеф (колебания высот до нескольких метров); мезорельеф (колебания высот до нескольких десятков метров); макрорельеф (колебания высот от нескольких десятков до нескольких сот метров). Влияние рельефа связано с количеством поступающего на поверхность почвы света, тепла и влаги. На степень освещения и нагрева почв влияет угол уклона рельефа, экспозиция уклона, крутизна (на южном склоне больше тепла, чем на северном). Рельеф перераспределяет полученную из атмосферы воду. Больше всего воды поступает в низинную часть рельефа. Все поднятия на земле – положительные элементы рельефа, на них меньше всего влаги. Обычно сверху находится грубая механическая порода (валуны, камень, гравий), снизу более мелкий и тонкий механический состав (суглинки, лёсы). Положительные элементы рельефа не участвуют в процессах почвообразования путём грунтовых вод, а отрицательные участвуют. Рельеф оказывает влияние на климатические условия, а соответственно на жизнь растений, животных, микроорганизмов, на перераспределение тепла и влаги, что сказывается на процессах почвообразования в целом. Кроме этого рельеф обусловливает перемещение почвенных масс по склону в результате эрозионных и аккумулятивных процессов. Функциирастительных и живых организмов в почвообразовании весьма разнообразны. Почвообразование является биогенным процессом, и оно начинается с момента появления растений и живых организмов на массивно-кристаллических или осадочных породах. Растительные и живые организмы являются единственным источником органического вещества, которое служит материалом для образования почвенного гумуса. Другая важная функция организмов базируется на способности живого вещества к избирательному поглощению элементов из почв. Благодаря этому свойству организмы в существенной степени определяют химический состав почв. Зеленые низшие и высшие растения используют в процессе роста радиационную энергию Солнца, вовлекая в биологический круговорот огромное количество химических элементов, ежегодно формируя около 233 млрд. т органического вещества на поверхности и внутри почвы. Корни растений чисто механически разрыхляют почву, увеличивая водо- и воздухопроницаемость пород, изменяют своими выделениями свойства материнских пород, что способствует развитию микроорганизмов. Микроорганизмы за счет выделяемых ими ферментов разлагают органические вещества и образуют органоминеральные соединения – гумус. По данным Е.Н. Мишустина (1987) количество микроорганизмов колеблется от нескольких сотен в 1 г дерново-подзолистых почв до 3 миллиардов в черноземных почвах. Масса микроорганизмов может составлять от 3 до 8 т/га в черноземных почвах. Грибы разлагают клетчатку, лигнин и другие органические вещества почвы и также способствуют образованию гумуса. Дождевые черви (живут на глубинах до 12 м), проделывая ходы в почве, рыхлят и аэрируют ее, что способствует развитию корневой системы растений, кроме того, перерабатывая органические остатки, образуют гумус. За один год черви, живущие на 1 га способны переработать до 100 т органических остатков и перемешать ~120 т земли. Насекомые и животные также активно разрушают органическое вещество, минерализуют его и, тем самым, выступают посредниками в обмене между почвой, атмосферой, обеспечивая круговорот элементов питания. Время развития зрелого почвенного профиля для разных условий – от нескольких сотен до нескольких тысяч лет. (Согласно данным, Л. Александровского увеличение мощности гумусового горизонта до 15 см происходит приблизительно за 100 лет). Возраст территории вообще и почвы в частности, а также изменения условий почвообразования в процессе их эволюции оказывают существенное влияние на строение, свойства и состав почвы. При сходных географических условиях почвообразования почвы, имеющие неодинаковые возраст и историю, могут существенно различаться и принадлежать к разным классификационным группам. Итак, можно констатировать, что все естественные факторы почвообразования взаимосвязаны и действуют одновременно, оказывая влияние не только на интенсивность биологического круговорота и почвообразования, но и друг на друга. Так, изменение микроклиматических условий может вызвать смену растительного покрова и почв. Почвы в свою очередь могут оказать воздействие на смену растительности и изменить микроклиматическую обстановку. Антропогенные (искусственные) факторы . Влияние хозяйственной деятельности человека на почвообразование проявляется в регулировании состава и характера растительности, изменении свойств самих почв и процессов, протекающих в них. На огромных лесных и сельскохозяйственных территориях производят механизированную обработку почв, при которой уничтожается естественная растительность, эксплуатируются леса, проводятся мелиоративные работы, вносятся органические, бактериальные и минеральные удобрения. Происходит изменение естественных физических и химических свойств почв, приостанавливаются нежелательные для человека направления процессов почвообразования, изменяются биологические свойства. При увеличении, например, содержания кальция (известковании) в почве становится больше органического вещества, меняется реакция среды, возрастает количество микроорганизмов и элементов питания; в результате повышается плодородие почвы. Осушение приостанавливает болотный процесс, а орошение в засушливых районах создает условия для накопления органического вещества в почвах, повышая плодородие почв и урожай растений. В результате хозяйственной деятельности человека изменяются характер и интенсивность биологического круговорота веществ, почвы дополнительно получают органическое вещество и элементы питания, формируется мощный пахотный горизонт, создаются окультуренные почвы с повышенным плодородием. Различной хозяйственной деятельностью охвачено 500 млн. га земель. Однако применение неправильных приемов ведения хозяйства вызывает развитие неблагоприятных почвообразовательных процессов: заболачивания, засоления, разрушения органического вещества и потери элементов питания.

3. Климат как фактор почвообразования. Климат, его роль в почвообразовании. Климат формируется под влиянием космических факторов (энергия Солнца) и геосферных (влияние земной поверхности на формирование воздушных масс). Он оказывает многостороннее влияние на биосферу, процессы почвообразования, свойства почв и почвенного покрова. Влияние климата на почвообразование проявляется как непосредственно, обусловливая водно-воздушный, тепловой, биологический, геохимический режимы почв, так и косвенно через другие компоненты биосферы: атмосферу, гидросферу, почвообразующие породы, рельеф, растительный, животный мир и хозяйственную деятельность человека. Все перечисленные компоненты биосферы зависят от тепловой энергии Солнца и условий увлажнения. С климатом связана широтная зональность биосферы (выветривание, денудация и др.), в том числе почвенных процессов (гумусонакопление, оподзоливание и др.) и вертикальная поясность в горах. Главными показателями климата являются тепло- и влагообеспеченность территорий. Температурный режим почв следует за температурным режимом приземного слоя атмосферы, но отстает от него. Среднегодовые температуры воздуха и почвы в пределах территории России возрастают с севера на юг и с востока на запад. Среднегодовая температура почвы на глубине 20 см изменяется в пределах России от -12 до + lб·с. Область отрицательных среднегодовых температур совпадает с областью распространения многолетней мерзлоты. В качестве критерия выделения термических групп климатов (термических поясов) принята сумма среднесуточных температур более to c. Для каждого термического пояса характерны определенные типы растительности и почв, поэтому в системе почвенно-географического районирования их называют почвенно-биоклиматическими поясами. В пределах почвенно-биоклиматических поясов существуют значительные различия по условиям увлажнения и степени континентальности климата, оказывающие большое влияние на дифференциацию типов растений и почв. В связи с этим выделяют почвенно-биоклиматические области по влагообеспеченности и степени континентальности климата. Для характеристики обеспеченности влагой используются гидротермические коэффициенты, рассчитываемые по отношению осадков к испаряемости. Наибольшее распространение получил коэффициент увлажнения (КУ), предложенный Г.Н.Высоцким (1904) и разработанный для географических зон Н.Н.Ивановым (1948), известный под названием "коэффициент Высоцкого Иванова". Он рассчитывается как отношение среднемноголетнего количества осадков за год к испаряемости, определенной с поверхности водоемов. В соответствии с водообеспеченностью вьщеляются группы климатов или почвенно-биоклиматические области.В основу разделения климата по степени континентальности положена годовая амплитуда температур. Коэффициент континентальности вычисляется по формуле, предложенной Н.Н.Ивановым: К= А · 100/0,33 М, где А - годовая амплитуда температуры из среднемесячных ее величин, М- широта местности. Для океанических областей степень континентальности (величина К) - менее 100%, для слабоумеренных и среднеконтинентальных- 100-250 и резкоконтинентальных-более 250%. При агроклиматическом районировании (Д.И.Шашко,1967) кроме обеспеченности теплом, влагой и континентальности климата используются следующие показатели: продолжительность периода вегетации с t > 10°С; суровость зимы, определяемая средней температурой самого холодного месяца; снежность зимы, характеризуемая высотой снежного покрова. Большое влияние на местные условия почвообразования оказывают микроклиматические условия, которые зависят от рельефа, растительного покрова, наличия водоемов и других биосферных факторов. Их необходимо учитывать при формировании адаптивно-ландшафтных систем земледелия. Например, почвы на склонах разной экспозиции, получающие разное количество тепла, имеют разную степень смытости, степень оглеения, мощность гумусового слоя и др. Климат влияет на эффективность земледелия, величину урожая как опосредованно, через свойства и плодородие почв, так и прямо, обусловливая оптимальные условия температуры и влажности атмосферы, освещенность, величину снежного покрова и др. Поэтому с климатическими условиями связан и набор культур, способных давать урожай при данных климатических условиях, и величина урожая. Даже на почвах одного и того же типа, например, черноземах выщелоченных, но в разных климатических условиях (Европейская часть России, Западная Сибирь, Восточная Сибирь) набор культур и максимальная величина урожая прежде всего определяются климатическими условиями. Из этого следует, что культурные растения в значительно большей степени реагируют на изменение климатических условий, по сравнению с почвами. Поэтому оценка плодородия почв должна проводиться в системе оценки ландшафтов, с обязательным учетом климатических условий и положения в рельефе.

4. Порода, как фактор почвообразования. Почвообразующие породы. Значение почвообразующей, или материнской, породы как фактора почвообразования заключается в том, что она является тем исходным материалом, из которого формируются почвы, и той средой, где проявляется деятельность живых организмов. Однако почвообразующая порода не есть инертный скелет почвы. Она принимает прямое участие в развивающихся на ней процессах, обусловливая гранулометрический, минералогический и химический состав почв и влияя тем самым на физические, физико-химические, водно-воздушные свойства, тепловой, питательный и водный режимы почвы. Все эти свойства непосредственно влияют на скорость, направленность и характер почвообразовательных процессов: минерализацию и гумификацию растительных остатков, скорость накопления и передвижения веществ в почвенной толще, а также на формирование и уровень почвенного плодородия. В одних и тех же природных условиях, но на различных почвообразующих породах могут формироваться совершенно разные почвы. Так, например, в таежно-лесной зоне на алюмосиликатной морене формируются малоплодородные, подзолистые почвы, а на карбонатной морене – плодородные почвы с высоким содержанием гумуса, агрономически ценной структурой и благоприятной нейтральной реакцией. В этой же зоне на флювиогляциальных песках формируются бедные и сухие песчаные почвы, а на аллювии – пойменные дерновые, плодородные почвы. По происхождению горные породы подразделяются на три группы: 1) магматические , образующиеся при внедрении в земную кору или извержении на поверхность магмы (основные – базальт, габбро; кислые – гранит; ультраосновные – перидонит, дунит); 2) осадочные горные породы, образующиеся путем механического или химического осаждения продуктов разрушения магматических и метаморфических пород, а также жизнедеятельности организмов; 3) метаморфические породы, образующиеся из ранее существовавших пород под воздействием факторов метаморфизма (высоких температур, давления, действия газов). Наиболее распространены сланцы, филлиты, гнейсы, кварциты, мраморы. На большей части Земли почвы сформировались на осадочных породах. Они покрывают около 75 %поверхности континентов. По генетическим признакам среди осадочных горных пород выделяют : обломочные, или механические, химические и органогенные. Механические (обломочные) , отложения образовались при механическом измельчении (дроблении) различных горных пород под влиянием термического выветривания, а также разрушения их ледниками и снеговыми водами. Элювий – продукты выветривания, остающиеся на месте их образования. Этот материал состоит из обломков разного размера. В условиях горного рельефа элювий встречается на повышениях. Почвы, образующиеся на элювиальных отложениях, характеризуются низким плодородием, малой мощностью, а также щебнистостью и каменистостью. Делювий – это рыхлые продукты выветривания, переносимые временными незначительными водными потоками, стекающими вниз по склонам во время дождей и весеннего снеготаяния. Этот мелкозёмистый материал откладывается у основания и в нижней части склонов. На делювиальных отложениях формируются почвы довольно высокого плодородия. Аллювий – отложения речных постоянных водных потоков. Эти отложения формируются в долинах рек во время паводков, характеризуются слоистостью и сортированностью. Могут быть разные по содержанию частиц – песчаные в околоречной части поймы и илистые в притеррасной части. Озерные отложения – сапропель, озерные илы, мергель. Для них характерны глинистый, реже тонкопесчаный состав со значительным количеством ила, карбонатов или легкорастворимых солей. Формируются довольно плодородные почвы. Болотные отложения состоят из торфа и болотногo ила. Морские отложения встречаются в Прикаспийской низменности, на побережье северных морей. Эти породы сортированы, разного гранулометрического состава, слоисты и содержат соли. На морских отложениях образуются засоленные почвы. Эоловые отложения образуются при переносе и отложении песчаного материала ветром. Песчаные наносы занимают большие территории в пустынях. Образуют такие формы рельефа, как дюны, барханы, бугры. На обширных равнинах в основном распространены отложения четвертичного периода – ледниковые отложения , продукты выветривания различных пород, перемещенные и отложенные ледником. Они преобладают и в составе почвообразующих пород Беларуси и делятся на моренные, водно-ледниковые, озерно-ледниковые. Для морены характерны несортированность, неоднородный механический состав, завалуненность, обогащенность первичными минералами, красно-бурая, желто-бурая окраски. Водно-ледниковые отложения связаны с перемещением и переотложением моренного материала ледниковыми потоками за краем ледника. Характеризуются сортированностью, ровным рельефом, безвалунностью, бедны по химическому составу, преимущественно песчаные. Озерно-ледниковые являются отложениями мелководных приледниковых озер. Характерно большое содержание пылеватых фракций, безвалунность, богатство химического состава, суглинки и супеси по механическому составу, часто карбонатные, уплотненные, склонны к заболачиванию. Лёссовидные суглинки и лёсс имеют различный генезис. Для них характерны палевая или буровато-палевая окраски, карбонатность, рыхлое сложение, они богаты по химическому составу, чаще легкие суглинки, склонны к размыванию и образованию оврагов. Химические осадочные породы возникают путем отложения вещества на дне водоемов из растворов в результате химических реакций или изменения температуры воды. Карбонатные породы образуются на дне морей частично при осаждении из воды углекислой кальциевой соли, поступающей вместе с речной водой. Большая же часть углекислого кальция, осевшего на морском дне, является продуктом деятельности некоторых организмов. Так, в меловом периоде мезозойской эры происходило накопление залежей мела за счет микроскопических раковинных амеб (фораминифер и др.). Органогенные породы состоят из продуктов жизнедеятельности животных и растений, а также из их неразложившихся остатков (торф). Многие карбонатные породы (известняки коралловые, ракушечные и др.) образуются с участием организмов, в скелетной или защитной части которых содержится карбонат кальция. При оценке почв все материнские породы делят (рис. 2) на засоленные и незасоленные . Засоленными породами являются отложения давно высохших морских бассейнов или озер, на них могут развиваться засоленные почвы (солончаки, солонцы). На карбонатных породах развиваются почвы с нейтральной реакцией среды, способствующей накоплению гумуса в почве (дерново-карбонатные и др.). Наиболее ценные почвообразующие породы – лёссы, лёссовидные суглинки и другие карбонатные породы (ледниковые и озерные отложения), а также аллювиальные суглинки в поймах рек. К менее ценным относятся бескарбонатные покровные суглинки, а к самым бедным – кварцевые пески (эоловые отложения).

Исходя из особенностей материнской породы, П.С.Косович (1911) сделал два вывода: 1. На одних и тех же породах могут формироваться разные почвы, если другие факторы почвообразования отличаются между собой. На суглинистой породе под травянистой растительностью формируется дерновая почва, под лесом – дерново-подзолистая или иная лесная почва. 2. Одни и те же почвы могут формироваться на разных породах, если иные факторы почвообразования одинаковы. Под смешанным хвойно-лиственным лесом на песчаных, супесчаных, суглинистых породах образуются дерново-подзолистые почвы. Однако возможны исключения: чем активнее идет процесс почвообразования, тем слабее влияет горная порода, но в случае, если химический состав и физические свойства породы выражены резко (карбонатная порода), она оказывает длительное влияние. Климат – многолетний режим погоды той или иной местности. В различных природных условиях климат подчиняется закону зональности. Он зависит от географической широты, высоты над уровнем моря, форм рельефа и удаленности от морей и океанов. Сильнее всего на почвообразование влияют температура, атмосферные осадки, ветер и влажность воздуха. Эти элементы в сочетании с другими факторами почвообразования обусловливают определенную закономерность в распространении почвенного покрова. С климатом связано обеспечение почвы энергией – теплом и в значительной мере водой. От величины годового количества поступающего тепла и влаги, особенностей их суточного и сезонного распределения зависят активность биологических процессов и развитие почвообразовательного процесса. Большое значение имеет характеристика климата по температурным показателям и условиям увлажнения. Выделяются следующие климатические группировки по показателям суммы температур выше 10 о С за вегетационный период: холодные полярные < 600 о, холодно-умеренные – 600 – 2000 о, тепло-умеренные – 2000 – 3800 о, теплые субтропические – 3800 – 8000 о, жаркие тропические > 8000 о . Эти группы климата располагаются в виде широтных поясов и называются почвенно-биотермическими поясами, которые характеризуется определенными типами растительности и почв. По условиям увлажнения выделяются климатические группировки: очень влажные– коэффициент увлажнения > 1,33, влажные гумидные – 1,00 – 1,33, полувлажные – 0,55 – 1,00, полусухие – 0,33 – 0,55, сухие аридные – 0,12 – 0,33, очень сухие – < 0,12. Коэффициент увлажнения (ГТК) – это отношение количества осадков к испаряемости. Обилие осадков способствует промыванию почвы и выносу в нижние горизонты легкорастворимых солей, в том числе и минеральных веществ, образующихся при разложении органических остатков. При засушливом климате эти соединения не только не выносятся, но, наоборот, способны накапливаться в верхних слоях почвы, приводя к её засолению. Климат оказывает прямое и косвенное влияние на характер почвообразовательного процесса. Прямое влияние связано с непосредственным воздействием на почву осадков, нагревания и охлаждения. Косвенное влияние климата проявляется через воздействие на растительность и животный мир. Таким образом, климат сильно влияет на тепловой, воздушный и другие режимы почв. От сочетания температурных условий и увлажнения зависят тип растительности и состав фитоценозов, скорость образования и трансформации органического вещества, скорость ферментативных реакций, метаболическая и функциональная активность микробиоты, растений и животных, процессы ветровой и водной эрозии.

6. Роль органических веществ в почвообразовании, плодородии, питании растений . Роль органических веществ в почвообразовании, плодородии почв и питании растений очень многообразна. Значительная часть элементарных почвенных процессов (ЭПП) происходит с участием гумусовых веществ. К ним относятся биогенно-аккумулятивные, элювиальные, элювиально-аккумулятивные, метаморфические и другие. Процессы взаимодействия органических веществ с минеральной частью почв лежат в основе почвообразования. Содержание, запасы и состав гумуса входят в состав главных показателей почвенного плодородия. Они оказывают также влияние на все режимы и свойства почв. Органическое вещество является источником азота и зольных элементов питания растений. В нем содержится 98% валового азота, с ним связано 40-60% фосфора, 80-90% серы, значительные количества кальция, магния, калия и других макро- и микроэлементов. Часть этих элементов находится в поглощенном состоянии и усваивается растениями в результате ионообменных реакций. Другая часть высвобождается и становится доступной растения после минерализации органических веществ. Установлено, что около 50% потребности в азоте культурные растения получают за счет почвенного органического вещества, прежде всего легкоразлагаемого, остальные 50% за счет минеральных удобрений. Органическое вещество оптимизирует физико-химические свойства почв. Поглотительная способность органических коллоидов значительно выше, чем минеральных, и достигает 1000 и более мг-экв./100 г препарата гумусовых веществ. Более гумусированные почвы обладают более высокой буферностью по отношению к кислотно-основным воздействиям, окислению-восстановлению и действию токсикантов. Поглощенные органическими и органо-минеральными коллоидами катионы являются доступными для растений и активно участвуют в их питании. Органическое вещество оказывает существенное влияние на структурное состояние, физические, водно-физические и физико-механические свойства почв. С увеличением гумусированности снижается плотность, увеличивается общая порозность, улучшается структура почвы, повышается водопрочность структурных агрегатов; увеличивается влагоемкость и водоудерживающая способность, водопроницаемость, диапазон активной влаги, гигроскопическая влажность; становятся оптимальными физико-механические свойства почвы: липкость, пластичность, твердость, удельное сопротивление. Гумус придает почве темную окраску, что способствует поглощению тепла. Органическое вещество играет ведущую роль в биологическом режиме почв. Источники гумуса поддерживают в почвах определенный уровень биологической активности; собственно гумусовые вещества способствуют сохранению микроорганизмов в почвах и создают комфортные условия для их функционирования. Повышенная биологическая активность почв способствует снижению численности патогенных микроорганизмов, ускоряет микробиологическую деградацию пестицидов. В составе органических веществ содержатся физиологически активные вещества, ускоряющие рост и развитие растений. Наряду с минеральными питательными веществами большое значение имеют органические вещества почвы, продукты гумификации и неполного разложения растительных и животных остатков. Преобладающее значение при этом имеют продукты переработки остатков зеленых высших фотосинтезирующих растений (продуцентов). Продуценты при отмирании или при - переработке цепью консументов обогащают почву органическим веществом. Опад надземных отмирающих частей накапливается на поверхности почвы в виде -слоя подстилки, ветоши и т. п. Количество образующейся за год подстилки различно в разных типах растительности, в разных зонах. Так, среднее количество подстилки, по данным Лархе-ipa (1978), составляет (т/га): в тропических злаковни-ках - 10-15; на лугах умеренной зоны - 6-10; в лесах - 5-9; в степях - 1-5; в тундре- 0,05-0,5; в пустынях - 0,01-0,05. Образующаяся подстилка с большей или меньшей скоростью разлагается, и поэтому ее запас зависит не только от количества опада, но и от скорости разложения, которая во многом определяется характером и составом подстилки, типом -почвы, ее фауной и особенно климатическими условиями. Бели опад сильно лигнифицирован и богат дубильными веществами, то он разлагается гораздо медленнее, чем опад лиственных пород. Годичный опад дождевого тропического леса, в силу специфических климатических условий и большой активности почвенных организмов, может разложиться в течение 1-2 лет, в лиственных лесах умеренной зоны - за 2-4 года, в хвойном лесу - за 4-5 лет, достаточно быстро (разложение идет в степной зоне, в тундре же оно может длиться десятки лет. В степной зоне скорость разложения ускоряется весной и летом (до периода засухи) и замедляется к зиме. В разложении подстилки принимают участие многочисленные животные организмы почвы, для которых опад служит пищей, и в первую очередь сапррофаги. В процессе переваривания все эти организмы выделяют экскременты, которые смешиваются с еще не съеденными растительными остатками. На богатых почвах широколиственных лесов в работу вступают дождевые черви, вырабатывая полностью переваренное вещество, включаемое в состав почвы, - мягкий гумус (муль). В лесной подстилке на кислых почвах хвойных лесов переработка растительного опада ведется главным образом грибами; при этом образуется грубый микоген-ный гумус (мор), пронизанный мелкими корнями высших растений, а также микоризой. Между мулем и грубым гумусом - мором иногда выделяют еще промежуточный тип - модер. Так происходит изменение органических остатков от первоначальных слагаемых подстилки до гумуса. Для образования гумуса не менее важна масса отмирающих корней. По массе корней, пронизывающих почву, на первом месте стоят широколиственные леса и луговые степи, на следующем - влажные тропические и субтропические леса и на последнем - пустыни. Относительная доля корневой фитомассы (от общей доли фитомассы) в лесах не очень велика - всего 20- 25%. Наиболее высоки относительная ма-сса корней и запас гумуса под травяной степной растительностью, что связано с большим количеством тонких, легко разлагающихся корней травянистых растений. Этот гумус обусловливает высокое плодородие степных черноземных почв. Таким образом, в формировании плодородия почвы основную роль играют конечные продукты гумификации, т. е. гумусовые вещества (гуминовые и подвижные фульвокислоты). Однако накопление в составе гумуса запасов питательных веществ означает одновременно и их иммобилизацию, поскольку они переходят в малодоступную форму. Кроме питательных веществ гумус содержит (И физиологически активные.компоненты; некоторые из них могут вызывать не только стимулирующее влияние, но иногда оказывают ингибирующее или даже токсическое воздействие. Гумус улучшает структуру почвы, ее физические свойства. Степень гумификации, т. е. степень переработанности исходных веществ, зависит от объема ежегодно поступающих в почву растительных остатков, от интенсивности их переработки и времени воздействия на них самой почвы в течение вегетационного периода. Величина степени гумификации достигает наиболее высоких значений в почвах черноземного типа и уменьшается как к северу (к подзолистым и тундровым почвам), так и к югу (к каштановым почвам и сероземам). В таком же порядке меняются общее содержание и запасы гумуса в почве и его состав. Интересно, что состав и свойства гумуса -не совпадают с отдельными климатическими показателями (осадки, радиационный баланс), но для почв умеренного климата хорошо коррелируют с уровнем биологической активности (Бирюкова, Орлов, 1978). Период биологической активности (т. е. период нормальной вегетации растительности и активной микробиологической деятельности) определяется в этом случае как время, когда температура воздуха устойчиво превышает 10°, а запас продуктивной влаги в почве составляет не менее 1-2%. Зависимость гумусообразования от температуры объясняет, почему почвы тропической зоны очень бедны гумусом. Здесь идет мощный процесс переработки остатков - при высоких температурах и влажности очень активны сапротрофы. В тундре растительные остатки почти не разлагаются, не минерализуются; при низких температурах очень мала активность салротрофов. В степной зоне, где много тонких корней трав и опада надземных частей, которые довольно медленно минерализуются, почва на большую глубину приобретает темную окраску. Масса гумуса здесь намного превышает фитомассу одной генерации растений и образуется чернозем - одна из плодороднейших почв. В лесной почве древесные корни живут дольше, чем корни трав, запасы органического вещества в почве леса меньше, чем в степи. Лесные почвы беднее гумусом, но часто имеют хорошо выраженный особый горизонт органических веществ, лежащий почти на поверхности, непосредственно под подстилкой. Наконец, в сырых заболоченных местах, где степень.разложения очень низка из-за малой активности сапротрофов, формируются различные типы торфов. В ненарушенных фитоценозах устанавливается определенное равновесие между запасом подстилки, количеством органического вещества в почве и фигомассой, и такое равновесие весьма важно, поскольку содержащиеся в опаде резервные питательные вещества остаются в распоряжении всей данной экосистемы и образующиеся при минерализации питательные элементы постепенно потребляются зелеными растениями. Отчуждение фитомассы или удаление опада ведет к обеднению почвы питательными элементами. Если минерализация органического вещества почвы происходит быстро (например в тропическом лесу), то минеральные элементы очень скоро высвобождаются и становятся доступными зеленым растениям, что обусловливает создание большой фитомассы (хотя при этом надо учитывать и повышенную возможность вымывания минеральных веществ из почвы). Таким образом, сложный цикл превращения органических веществ (опад → гумификация →минерализация → возврат в растение) постоянно поддерживает достаточное содержание биологически важных элементов, а плодородие почвы во многом зависит от скорости возврата отнятых у нее элементов. Некоторые элементы теряются, уходя в атмосферу или с дренирующими водами через сток. Но продолжающееся выветривание, фиксация азота, отложение пыли - все это восстанавливает часть утраченных элементов. Вообще зеленые растения отдают почве больше, чем берут от нее. Они изымают сравнительно малое количество растворенных веществ, а возвращают большую массу органических веществ: целлюлозу, лигнин, крахмал, сахара, жиры, протеины и т. д. Это позволяет развиваться в почве многим животным, а также тем организмам, которые питаются этими животными.

7.Рельеф, его роль в почвообразовании. Рельеф - это совокупность форм земной поверхности разных масштабов. Наука о рельефе, его строении и происхождения - геоморфология. В зависимости от размеров форм земной поверхности различают мегарельеф, макрорельеф, мезорельеф и микрорельеф. Мегарельеф - это наиболее крупные неровности земной поверхности - материковые массивы и океанские впадины. Макрорельеф - крупные формы земной поверхности, занимающие большую плошадь, с колебаниями высот, измеряемыми сотнями метров и километрами (горные хребты, плоскогорья, равнины). Мезорельеф - формы рельефа средних размеров с колебаниями высот, измеряемыми метрами и десятками метров (склоны, ложбины, балки, террасы и др.). Микрорельеф- мелкие формы рельефа, занимающие незначительные площади, с колебаниями высот в пределах одного метра (западины, блюдца, бугорки и др.). Разновидностью микрорельефа является нанорельеф - самые мелкие формы рельефа с колебаниями высот в пределах 30 см: кочки, неровности, связанные с обработкой почвы (борозды, гребни и др.). Рельеф создается в результате одновременного воздействия на земную поверхность эндогенных (тектонических) и экзогенных сил, возбуждающих деятельность денудационных процессов: текущей воды, ветра, льда и др., гравитационных сил и пр. Те и другие силы действуют антагонистически. Эндогенные – создают крупные неровности, экзогенные- разрушают и понижают положительные формы рельефа и заполняют продуктами разрушения отрицательные формы. Рельеф играет большую роль в процессах функционирования биосферы и в почвообразовании. Мега- и макроформы рельефа (материки, океаны, горные системы) участвуют в формировании воздушных масс и перераспределении тепла и влаги по земной поверхности, определяя климатические и погодные условия, а через них - макроэкосистемы с характерным почвенным покровом. Наглядным примерам этого является вертикальная поясность в горах. Мезо- и микроформы рельефа перераспределяют тепло и влагу в пределах склонов, повышений и понижений. Они определяют особенности микроклимата и глубину залегания грунтовых вод, тем самым формируя мезо- и микроэкосистемы с характерными особенностями почвенного покрова. Мезо- и микрорельеф определяют размер и форму элементарных почвенных ареалов, образующих различные почвенные комбинации (сочетания, комплексы и др.) в структуре почвенного покрова. Большое влияние рельеф оказывает на формирование агроэкосистем и хозяйственную деятельность человека. В качестве примеров можно привести земледелие горное и на равнинах, противоэрозионные системы земледелия на склонах. В последние годы разрабатываются адаптивно-ландшафтные системы земледелия, в которых рельеф является одним из ведущих факторов выбора культуры и технологий их выращивания. С перераспределением влаги по элементам рельефа связана миграция твердых веществ с поверхностным стоком и растворенных - с поверхностным и внутрипочвенным стоком. Эти процессы обусловливают геохимические особенности ландшафтов, интенсивность процессов денудации и антропогенной эрозии. Типы рельефа и их распространение .С учетом внешнего вида (морфологии) и происхождения (генезиса) выделяются следующие морфагенетические типы рельефа (по К.К.Маркову): 1) горный (структурно-тектонический); 2) структурный (пластовый); 3) скульптурный (эрозионный); 4) аккумулятивный (насыпной). Горный, ши структурпо-тектопический тип рельефа подразделяется на несколько подтипов. Высокогорный рельеф характеризуется самой высокой амплитудой колебаний высот и самыми высокими абсолютными высотами, значительной крутизной склонов с острыми вершинами, лишенными растительности. Рыхлые отложения здесь не накапливаются, и формируются слаборазвитые маломощные почвы. Этот тип рельефа характерен для горных систем Кавказа, Памира, Алтая и др. Альпийский рельеф имеет черты высокогорного, но со значительным участием рыхлых ледниковых отложений в нишеобразных понижениях на склонах и в долинах, на которых широко распространены альпийские луга, используемые под пастбища. Альпийский рельеф распространен в ropax Кавказа, Памира, ТяньШаня, встречается в более низких горных системах на Урале и в горах Сибири. Нагорья представляют собой высокогорные выровненные поверхности со значительной мощностью рыхлых отложений и сформированными почвами. Распространены в Закавказье, Васза очном Памире, Алтае, Саянах, Становом хребте, горах северо: осточной Сибири. Здесь широко распространены альпийские дуга и местами развито высокогорное земледелие. Среднегорный рельеф характеризуется более низкими абсоюотными высотами с амплитудой относительных колебаний высот от 0,5 до 2 км. Склоны менее крутые, поэтому покрыты щебнистым материалом и, как правило, находятся под лесами. Распространены практически во всех горных системах России. Низкогорный рельеф характеризуется низкими абсолютными отметками и амплитудой относительных колебаний менее 0,5 км. Распространен этот тип по окраинам высоких и среднегорных систем. Селыовый рельеф характеризуется амплитудой относительных колебаний в пределах 100-200 м. Межгрядовые долины заполнены ледниковыми отложениями. Встречается в Карелии и на Кольском полуострове. Структурный, или пластовый тип рельефа представлен плоскими, горизонтально залегающими пластами осадочных пород, устойчивыми к процессам денудации. В этом типе рельефа также выделяется несколько подтипов. Плоскогорья высотой до 1 км, наибольшее распространение имеют в Средней Сибири. Плато имеют высоту до 400 м. Распространены на северо-западе и востоке Европейской части России. Куэсты - узкие плато, имеющие наклон в одну сторону. Распространены в Крыму и на Северном Кавказе. Скульптурный, или эрозионный тип рельефа представлен равнинами, которые образавались в результате речной и плоскостной эрозии, морской абразии. Они имеют разную степень расчленения. Мощность четвертичных отложений более высокая в нижних частях склонов и в понижениях. Эрозионный тип рельефа характерен- для Среднерусской, окраинных частей Океко-Донской и Среднеднепровской возвышенностей и Западно-Сибирской низменности. Аккумулятивный, или насыпной тип рельефа характеризуется накоплением рыхлых четвертичных отложений в областях погружения. Он включает несколько подтипов. Аллювиальные равнины- это слабо поиижеиные плоскохолмистые и плосковолнистые территории, охватывающие значительные части бассейнов крупных рек и их притоков. Они имеют мощную толщу четвертичных отложений, до нескольких десятков метров, представленных современными и древнеаллювиальными nесчаными и суглинистыми отложениями. Аллювиальные равнины слабо расчленены, часто заболочены. К аллювиальным равнинам относится Ярославско-Костромская, Марийская. Огромная озерно-аллювиальная равнина расположена на юге Западной Сибири в бассейнах рек Иртыша и Тобола. Ледниковый и водно-ледниковый аккумулятивный рельеф представлен холмистыми, холмисто-увалистыми равнинами, сложенными маренными и водно-ледниковыми отложениями. Такой рельеф занимает большие площади на северо-западе и севере европейской части России и на севере Западно-Сибирской низменности. Они представлены зандровыми равнинами в ВИде плоских конусов выноса подледниковых потоков и специфических маренных образований в виде холмов и валов высотой 20-25 м, получивших название озы, камы, друмлины. Морской аккумулятивный рельеф представлен плоскими и плоско-волнистыми формами на побережье Северного Ледовитого океана и в Прикаспийской низменности. Они сложены морскими отложениями. Эоловый аккумулятивный рельеф имеет наибольшее распространение в песчаных пустынях Средней Азии, а также на побережьях морей и озер. Для них характерны такие формы как барханы, бугристые и грядовые пески. Приморские, приозерные и приречные

8.Виды воды в почвах (водные свойства). Вода играет огромную роль в жизни Земли – без нее нет жизни. Вода обладает большой подвижностью, передвигается даже в твердом состоянии. В жидком состоянии вода двигается под действием силы тяжести, в парообразном – за счет диффузии и пассивно с воздухом. Благодаря большой подвижности и способности переносить различные вещества вода играет большую роль в обмене веществ. Воды как поверхностные так и грунтовые, играют огромную роль в процессах почвообразования. Эта роль заключается в первую очередь в формировании окислительно-восстановительного режима почвы. При глубоком залегании грунтовых вод и отсутствии застоя поверхностных вод в почвенном профиле создаются аэробные условия и протекают окислительные явления, которые сопровождаются интенсивной минерализацией органического вещества. В таких условиях формируются автоморфные почвы, не имеющие признаков заболачивания. Автоморфные почвы всегда содержат значительно меньше гумуса, различия их с полугидроморфными могут достигать 2 раз. Например, в автоморфных дерново-подзолистых легкосуглинистых почвах на лессовидных суглинках обычное содержание гумуса составляет 1,5-2,0%, а в глееватых и глеевых – 3,0-4,0%. В дерново-подзолистых песчаных эти показатели составляют соответственно 1,0-1,5 и 2,0-2,5 %. При избыточном увлажнении, обусловленном близким залеганием грунтовых вод и застоем поверхностных вод в пониженных элементах рельефа, развивается болотный процесс почвообразования. Особенностью болотного процесса почвообразования являются анаэробные условия и восстановительные процессы. В анаэробных условиях уменьшается активность окислительных процессов, что приводит к ослаблению минерализации органического вещества. На поверхности почвы накапливаются полуразложившиемся органические останки в виде торфа, которому свойственна высокая гидрофильность и влагоемкость, а также низкая аэрация при избыточном увлажнении, ведет к дальнейшему развитию процессов заболачивания. Почвенная влага – основной ресурс для построения тела растений и важнейший фактор, определяющий условия существования сельскохозяйственных культур и обработки почвы. Вода необходима для растений в значительно больших количествах, чем другие средства питания растений. Необходимо отметить, что значительная часть элементов питания усваивается растениями, а характерной особенностью воды является ее непрерывное, одностороннее передвижение из почвы через корни растений вверх по стеблю к листовой поверхности, где она испаряется в атмосферу. Растения, произрастающие на влажной почве, в

Высшие растения как продуценты и главный источник поступления в почву органического вещества играют особую роль в почвообразовании.

Они являются своеобразным мощным насосом, перекачивающим химические элементы и воду из почвы в свои органы. Корни растений, проникая в почву, разрыхляют ее и активно воздействуют на ее фазовый состав.

Площадь лесов на планете составляет около 30 %. Оптимальные условия для лесной растительности - превышение суммарного количества осадков над испарением. Избыток влаги при господстве древесной, особенно хвойной растительности способствует интенсивному выщелачиванию растворенных соединений, глубокому разрушению минералов и выносу продуктов почвообразования за пределы профиля.

Под лесной растительностью в почвах формируется специфический биоценоз из позвоночных, беспозвоночных, грибов. Общая фитомасса лесной растительности колеблется от 3 до 5 тыс. ц/га, при этом около 500 ц/га приходится на долю ризомассы, т. е. корней.

Главная роль в лесном почвообразовании принадлежит наземному опаду и тонким корням. Общая поверхность сосущих корневых окончаний столетнего древостоя сосны на 1 га может составить до 1,5 га. У хвойных пород до 95% ризомассы сосредоточено в верхнем слое почвы (0-30 см). С корнями деревьев всегда связана микориза. Поэтому в ризосфере деревьев обитает значительное количество микроорганизмов, а численность простейших в 5-10 раз выше по сравнению с их средним содержанием в почвах.

Кислотность почвы в хвойных лесах усиливается за счет выщелачивания дождевыми водами веществ кислотной природы из живых листьев, хвои и коры. Подкисление до pH 3,3-4,5 может быть вызвано жизнедеятельностью мхов и лишайников. В ризосфере хвойных пород концентрация водородного иона всегда выше (pH ниже на 0,2-0,6), чем вне ризосферы. Водная вытяжка из хвои ели имеет pH около 4, из подстилки сосны - 4,5, а листья широколиственных пород - около 7. Резкие различия в реакции растворов продуктов из листьев и хвои объясняются тем, что для листьев и хвои характерны разные зольность и содержание оснований. При низкой зольности подстилка может иметь pH около 4,5-4,6. Нейтральная реакция типична для лесной подстилки лиственных лесов.

Роли древесной и травянистой растительности в почвообразовании существенно различны. Это связано с глубиной проникновения в почвенную толщу и распределением корневой системы, а также с различиями в величине и характере поступления растительных остатков в почву, их зольном составе.

Совокупность процессов поглощения растениями химических элементов из почвы, синтеза и разложения органического вещества, возврата химических элементов в почву называется биологическим круговоротом веществ в системе «растение - почва».

Некоторые химические элементы, участвующие в биологическом круговороте, не удерживаются почвой, выносятся геохимическим внутрипочвенным стоком за пределы почвенного профиля и включаются в большой геологический круговорот химических элементов.

Для характеристики биологического круговорота веществ используются следующие показатели: запасы фитомассы (ц/га) в надземной и подземной частях растений, величина годичного прироста фитомассы и опада, содержание зольных химических элементов в разных частях растений и в опаде. Отношение массы подстилки к массе ежегодного опада служит показателем интенсивности биологического круговорота.

Корневая система растений поглощает из почвенного раствора макроэлементы (Са, N, К, Р, S, Al, Fe) и микроэлементы (Zn, В, Мn…) минерального питания и выделяет в эквивалентном количестве ионы (Н + , ОН —), ферменты и другие органические соединения, активно участвующие в почвенных процессах. В среднем растительность умеренного климата поглощает из почвы ежегодно 100-600 кг/га минеральных веществ. Количество поглощаемых из почвы и возвращаемых в нее с растительным опадом химических элементов зависит от типа фитоценозов.

Агроценозы, приходящие на смену биогеоценозам, вносят огромные изменения в биологический круговорот веществ. С урожаем культурных растений из почвы безвозвратно выносится колоссальное количество зольных элементов. Так, с урожаем пшеницы 20-25 ц/га отчуждается из почвы до 150-200 кг/га основных элементов минерального питания (N, P, K, Ca, Mn, Fe, S, Si, Al, Mg).

Скорость разложения органических остатков и характер образующихся в результате этого процесса веществ зависят от климатических условий и состава растительности. Химический состав органических веществ, образующихся в процессе фотосинтеза, зависит от типа растений. Мхи и древесина отличаются высоким содержанием лигнина. В злаках много гемицеллюлозы, в иглах сосны - воска, жиров и смол.

В процессе разложения органических остатков в почву возвращаются зольные элементы, поглощенные растениями из почвы.

Индекс интенсивности биологического круговорота веществ максимален в заболоченных ландшафтах (более 50), где происходит прогрессивное накопление торфа и образование болотных торфяных почв. В темнохвойных таежных лесах индекс интенсивности биологического круговорота значительно меньше (10-17). Минерализация опада в хвойных лесах происходит замедленно и на поверхности почвы формируются органические горизонты, часто наблюдается образование торфяного слоя. Интенсивность биологического круговорота в степях составляет 1,0-1,5. Образующийся в естественных степных экосистемах степной войлок из травянистой растительности разлагается в течение года.

Продукты разложения хвои, листьев, трав, стволов различны по химизму и влиянию на почвообразование. Так, продукты разложения степных трав имеют близкую к нейтральной реакцию (pH = 7). Экстракты из хвои ели, вереска, лишайников, сфагнового мха имеют кислую реакцию (pH 3,5-4,5). Экстракты из полыни имеют щелочную реакцию (pH 8,0-8,5).

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Зеленые растения

Различные группы растений обусловливают неодинаковый ход биологического круговорота. Низшие растения имеют небольшую продолжительность жизни и, следовательно, определяют быстрое обращение элементов в биологическом круговороте. Высшие растения имеют развитую корневую систему, обеспечивающую большую площадь соприкосновения организма с почвой. Круговорот осуществляется в течение одного года у травянистой растительности и в течение нескольких лет (десятков, сотен, тысяч) - у древесной. При этом разные элементы не одинаковое время удерживаются растительными организмами. В природе часто наблюдается сочетание рассматриваемых групп растений. Различают следующие их группы:

лишайниково-моховые формации занимают тундру и болота;

древесная формации - это таежный и широколиственный леса, влажные субтропические леса и тропические (дождевые) леса;

к группе переходных древесно-травянистых формациям относятся ксерофитные леса, эта группа растений типична для лесостепи и саванны;

к группе травянистых формаций отнесены суходольные и заболоченные луга, прерии, степи умеренного пояса, субтропические кустарниковые степи;

пустынная формация делится в свою очередь на суббореальную, субтропическую, тропическую.

Каждая формация характеризуется своим особенным составом и свойством органического вещества, процессами разложения органики. Биомасса каждой растительной формации также имеет свои отличия, что отражается на составе органического вещества почв.

Водоросли распространены во всех почвах, в их поверхностном слое. В почве распространены диатомовые, сине-зеленые и зеленые водоросли. Количество их зависит от увлажнения почвы. Все они автотрофы. Синтезируют органику путем фотосинтеза. Водоросли, при отмирании, обогащают почву органическим веществом, легко разлагающимся микроорганизмами. Участвуют в процессах выветривания горных пород.

Микроорганизмы участвуют в трансформации органических остатков, превращая их либо в гумус, либо разрушая органику до конечных продуктов, при этом сложные органические соединения разлагаются до минеральных солей, доступные для растительности. Бактерии усваивают атмосферный азот и снабжают им высшие растения, синтезируют сложные органические соединения, строя из них свое тело. Участвуют в окислительно-восстановительных процессах в почве, изменяя степень окисленности различных органических и минеральных соединений. Таким образом, почти все звенья почвообразовательного процесса связаны с жизнедеятельностью микроорганизмов. Все эти процессы микроорганизмы осуществляют при помощи ферментов.

Грибы - это сапрофитные гетеротрофные организмы. Нельзя не отметить большую роль грибов, которые лучше развиваются в почвах с низкими показателями рН. Эти организмы обладают широким комплексом гидролитических ферментов, посредством которых осуществляют разложение всех видов органических веществ. В том числе они разлагают устойчивые к гидролизу и окислению такие соединения как лигнин, фенолы, хиноны, ароматические углеводороды, воска

Велика роль в почвообразовании червей , а также млекопитающих, живущих в почве, прокладывающих в почве ходы диаметром от нескольких миллиметров до 4 до 12 см., перемешивающие почву на разные глубины, в основном на глубину до 1 метра, выделяющие ферменты, органические кислоты, увеличивающие при отмирании биомассу почвы.

Процесс образования почвы и деятельность микроорганизмов

Все почвы на Земле образовались из выходящих на дневную поверхность весьма разнообразных горных пород, которые обычно называют материнскими. В качестве почвообразующих выступают главным образом рыхлые осадочные породы, так как изверженные и металморфические породы выходят на дневную поверхность сравнительно редко.

Основоположник научного почвоведения В. В. Докучаев рассматривал почву как особое тело природы, столь же самобытное, как растение, животное или минерал. Он указал, что в различных условиях образуются разные почвы, и что они изменяются во времени. По определению В. В. Докучаева, почвой следует называть «дневные», или поверхностные горизонты горных пород, естественно измененные влиянием ряда факторов. Тип почвы слагается в зависимости от:

а) материнской породы,

б) климата,

в) растительности,

г) рельефа страны

д) возраста почвообразовательного процесса.

Разрабатывая научные основы почвоведения, В. В. Докучаев отмечал огромную роль живых организмов, и в частности микроорганизмов, в формировании почвы.

Период творчества В. В. Докучаева совпал со временем великих открытий Л. Пастера, показавших огромное значение микроорганизмов в превращении разнообразных веществ и в инфекционном процессе. В конце прошлого и в начале текущего века был сделан ряд важных открытий в области микробиологии, имевших принципиальное значение для почвоведения и земледелия. Было установлено, в частности, что в почве содержится огромное количество разных микроорганизмов. Это давало повод думать о существенной роли микробиологического фактора в формировании и жизни почвы.

Одновременно с В. В. Докучаевым работал другой выдающийся ученый-почвовед П. А. Костычев. В монографии «Почвы черноземной области России, их происхождение, состав и свойства» (1886) он писал, что геология имеет второстепенное значение в вопросе о черноземе, потому что накопление органического вещества происходит в верхних слоях земли, геологически разнообразных, и чернозем является вопросом географии высших растений и вопросом физиологии низших растений, разлагающих органическое вещество. П. А. Костычев провел ряд опытов по выяснению роли отдельных групп микроорганизмов в создании перегноя почвы.

Большой вклад в представления о роли биологического фактора в преобразовании Земли и в процессе почвообразования сделал ученик В. В. Докучаева академик В. И. Вернадский. Он считал, что главным фактором в миграции химических элементов в верхней части земной коры являются организмы. Их деятельность затрагивает не только органические, но и минеральные вещества почвенного и подпочвенного слоев.

Уже с начальных этапов превращения горных пород в почву роль микроорганизмов в процессах выветривания минералов вырисовывается весьма наглядно. Выдающиеся ученые В. И. Вернадский и Б. Б. Полынов рассматривали выветривание горных пород как результат деятельности растительных, преимущественно низших организмов. К настоящему времени эта, точка зрения подтверждена большим экспериментальным материалом.

Обычно первыми поселенцами горных пород являются накипные лишайники, образующие листообразные пластины, под которыми накапливается небольшое количество мелкозема. Лишайники, как правило, находятся в симбиозе с неспорообразующими сапрофитными бактериями.

В отношении ряда элементов лишайники выступают как их аккумуляторы. В мелкоземе под литофильной растительностью резко увеличивается количество органического вещества, фосфора, окиси железа, кальция и магния.

Из других растительных организмов, поселяющихся на материнских породах, следует отметить микроскопические водоросли, в частности сине-зеленые и диатомовые. Они ускоряют выветривание алюмосиликатов и также обычно живут в ассоциации с неспорообразующими бактериями.

Водоросли, очевидно, играют существенную роль как автотрофные накопители органических веществ, без которых не может протекать энергичная деятельность сапрофитных микроорганизмов. Последние продуцируют разные соединения, вызывающие выветривание минералов. Многие сине-зеленые водоросли являются фиксаторами азота и обогащают разрушаемую горную породу этим элементом.

Основную роль в процессе выветривания, вероятно, играют углекислота, минеральные и органические кислоты, вырабатываемые разными микроорганизмами. Имеются указания, что сильным растворяющим действием обладают некоторые кетокислоты. Не исключается возможность участия в выветривании перегнойных соединений.

Следует отметить, что многие бактерии образуют слизи, облегчающие тесный контакт микроорганизмов с горной породой. Разрушение последней происходит как под влиянием продуктов жизнедеятельности микроорганизмов, так и в результате образования комплексных соединений между веществом слизей и химическими элементами, входящими в состав кристаллических решеток минералов. Выветривание горных пород в природе должно рассматриваться как единство двух противоположных процессов — распада первичных минералов и возникновения вторичных минералов. Новые минералы могут возникать при взаимодействии микробные метаболитов друг с другом.

В зависимости от сочетания ряда природных факторов дальнейшее развитие почвообразовательного процесса протекает различно, обусловливая образование того или иного типа почвы. С первых этапов развития почвообразовательного процесса начинает накапливаться в почвенном слое перегной.

В создании перегноя почвы большое значение имеют микроорганизмы. Их роль весьма многогранна. Они разлагают различного рода остатки и среди прочих веществ образуют соединения, которые служат структурными единицами молекул гумусовых веществ. Частично подобного рода вещества создаются самими микроорганизмами. Наконец, многие микроорганизмы вырабатывают фенолоксидизы, которые окисляют полифенолы до хинонов, легко конденсирующихся при определенных условиях в перегнойные соединения.

Под термином «перегной», или «гумус», объединяется целая группа родственных высокомолекулярных соединений, химическая природа которых до сих пор точно не установлена. Гумус составляет 85-90% всего еретического вещества почвы. В нем аккумулировано значительное количество азота, фосфора и ряда других элементов. Перегнойные соединения могут разлагаться очень многими микроорганизмами (бактериями, актиномицетами, грибами и т. д.).

В природных условиях накопление перегноя в почве является результатом двух диаметрально противоположных процессов — его синтеза и распада. Существенное значение при этом имеет поступление в почву растительных остатков.

Следует отметить также, что перегнойные соединения в небольших концентрациях стимулируют рост растений, что объясняется содержанием в них биологически активных веществ. Чем больше в почве перегноя, тем более энергично протекают в ней микробиологические и биохимические процессы, играющие огромную роль в накоплении питательных для растений соединений.

Микроорганизмы в создании плодородия почв

Почва является основным средством производства в сельском хозяйстве. Все продукты сельского хозяйства состоят из органических веществ, синтез которых происходит в растениях под воздействием, главным образом, солнечной энергии. Разложение органических остатков и синтез новых соединений, входящих в состав перегноя, протекает при воздействии ферментов, выделяемых разными ассоциациями микроорганизмов. При этом наблюдается непрерывная смена одних ассоциаций микробов другими.

Микроорганизмов в почве очень большое количество. По данным М. С. Гилярова, в каждом грамме чернозема насчитывается 2-2,5 миллиарда бактерий. Микроорганизмы не только разлагают органические остатки на более простые минеральные и органические соединения, но и активно участвуют в синтезе высокомолекулярных соединений - перегнойных кислот, которые образуют запас питательных веществ в почве. Поэтому, заботясь о повышении почвенного плодородия (а, следовательно, и о повышении урожайности), необходимо заботиться о питании микроорганизмов, создании условий для активного развития микробиологических процессов, увеличении популяции микроорганизмов в почве.

Основными поставщиками питательных веществ для растений являются аэробные микроорганизмы, которым для осуществления процессов жизнедеятельности необходим кислород. Поэтому увеличение рыхлости, водопроницаемости, аэрации при оптимальной влажности и температуре почвы обеспечивает наибольшее поступление питательных веществ к растениям, что и обуславливает их бурный рост и увеличение урожайности.

Однако растениям для нормального роста и полноценного развития необходимы не только макроэлементы, такие как калий, азот, фосфор, но и микроэлементы, например, селен, который выступает как катализатор в различных биохимических реакциях и без которого растения не в состоянии сформировать действенную иммунную систему. Поставщиками микроэлементов могут быть анаэробные микроорганизмы - это микроорганизмы, которые живут в более глубоких почвенных пластах и для которых кислород — яд. Анаэробные микроорганизмы способны по пищевым цепям «поднимать» необходимые растениям микроэлементы из глубинных слоев почвы.

В окультуренных плодородных почвах бурно развиваются не только микрофлора, но и почвенная фауна. Животные в почве представлены дождевыми червями, личинками различных почвенных насекомых и живущими в почве грызунами. Из числа микроскопической фауны черви являются наиболее активными почвообразователями. Они живут в поверхностных горизонтах почвы и питаются растительными остатками, пропуская через свой кишечный тракт большое количество органического вещества и минеральной составляющей почвы. Микроорганизмы в почве образуют сложный биоценоз, в котором различные их группы находятся между собой в сложных отношениях. Одни из них успешно сосуществуют, а другие являются антагонистами (противниками). Антагонизм их обычно проявляется в том, что одни группы микроорганизмов выделяют специфические вещества, которые тормозят или делают невозможным развитие других.

Почвы населены многочисленными представителями микроскопических существ. Мир их разделен на растительные и животные виды. Микроскопический растительный мир почвы представлен бактериями, актиномицетами, дрожжами, грибами, водорослями. Животный мир почвы составляют простейшие (протозоа), насекомые, черви и прочие. Кроме них, в почве обитают различные ультрамикроскопические существа - фаги (бактериофаги, актинофаги) и многие другие еще мало изученные виды.

Особенно широко представлены в почве гнилостные, масляно-кислые и нитрифицирующие бактерии, актиномицеты и плесневые грибы.

Количество микробной флоры зависит от плодородия почв. Чем плодороднее почвы, чем больше в них перегноя, тем плотнее заселены они микроорганизмами. Накопление микроорганизмов в значительной степени зависит от количественного и качественного содержания органических веществ в свежеотмерших растительных и животных остатках и продуктах их первичного распада; вначале микробов больше, а после минерализации уменьшается.

Существенное значение в жизни микроорганизмов имеют витамины, ауксины и другие биотические вещества. Небольшие дозы их заметно ускоряют развитие и размножение клеток микробного населения.

Почва при высушивании обедняется микроорганизмами. Иногда численность их при высушивании образцов почвы уменьшается в 2-3 раза, а нередко в 5-10 раз. Наиболее стойко сохраняют жизнеспособность актиномицеты, затем микобактерии. Самый высокий процент гибели отмечается среди бактерий. Однако полного вымирания бактерий, даже в условиях длительной засухи почвы, как правило, не происходит. Даже у весьма чувствительных к высушиванию культур имеются единичные клетки, которые длительное время сохраняются в сухом состоянии.

На распределение отдельных микробов сильное влияние оказывает кислотность почвенного раствора. В почвах с нейтральной или слегка щелочной реакцией бактерий бывает значительно больше, чем в кислых, заболоченных или торфяных почвах.

Плесневые грибы лучше переносят кислую среду, чем бактерии, поэтому они обычно доминируют в кислых почвах.

Вопрос о распределении микробов в почве освещен недостаточно. Повседневные микробиологические исследования почв показывают, что клетки бактерий размещаются отдельными очагами, в каждом из которых разрастаются и концентрируются клетки одного или нескольких неантагонистических видов.

Групповой состав бактерий в разных почвах не одинаков. Из бактерий в почве преобладают формы, не образующие спор. Спороносные бактерии составляют около 10-20%.

В почве в больших количествах обитают также актиномицеты, грибы, водоросли и простейшие. Грибов и актиномицетов в 1 г почвы насчитывается десятки и сотни тысяч, а нередко миллионы. Общая масса водорослей, по мнению исследователей, немногим уступает общей массе бактерий.

Простейшие и насекомые на гектар пахотного слоя составляют массу, равную 2-3 т. Вся эта масса живых существ находится в непрерывном развитии. Отдельные клетки — особи растут, размножаются, стареют и погибают. Происходит непрерывная смена и обновление всей живой массы. Вся бактериальная масса, по самым скромным подсчетам, регенерируется за лето в южной полосе 14-18 раз. Таким образом, общая бактериальная продукция пахотного горизонта почвы за вегетационный период определяется десятками тонн живой массы.

Самый верхний слой почвы беден микрофлорой, потому что находится под непосредственным влиянием вредно действующих на нее факторов: высушивание, ультрафиолетовые лучи солнечного света, повышенная температура и прочее. Наибольшее количество микроорганизмов располагается в почве на глубине 5-15 см, меньше — в слое 20-30 см и еще меньше - в подпочвенном горизонте 30-40 см. Глубже могут существовать лишь анаэробные формы микробов.

Влияние обработки почвы на интенсивность микробиологических процессов. Вспашка, культивация, боронование значительно стимулируют развитие микрофлоры. Это связано с улучшением водно-воздушного режима почв.

Наиболее благоприятные условия при обработке создаются для аэробных микробов, в результате чего весной уже через 8-20 дней после обработки численность микрофлоры возрастает в 5-10 раз.

Разные приемы обработки почвы действуют неодинаково на микробы и мобилизацию питательных веществ в пахотном слое. Поверхностное рыхление подмосковных подзолистых почв усиливает развитие микроскопических существ, только в самом верхнем слое почвы сапрофитных бактерий в этом слое в 3-4 раза больше, чем в других. Послойное рыхление без оборота пласта активировало микрофлору незначительно. При рыхлении с оборотом пласта почти в 3 раза возросла численность микроорганизмов в нижнем слое, попадающем наверх. Даже в среднем слое, остающемся при такой обработке на месте, содержание микробов явно увеличивается. Аналогичные изменения наблюдались и в развитии нитрифицирующих бактерий. Эти данные показывают, что положительный эффект от оборота пласта в основном объясняется интенсивной минерализацией в нижней его части органических веществ.

В условиях орошаемого земледелия глубина и способ обработки заметно увеличивают количество полезных микроорганизмов как в поверхностных, так и в нижних слоях почвы. При глубокой вспашке наверх выворачивается малоплодородный, бедный микроорганизмами слой почвы, количество микробов в горизонте 0-20 было больше, чем при пахоте на глубину 20 см.. Это можно объяснить положительным влиянием удобрений, орошения и другими факторами.

В связи с тем, что превращения органических веществ в почве тесно связаны с деятельностью микроорганизмов, в слоях, где возросло их количество, увеличилось и содержание растворимых питательных веществ, включая нитраты. Существенно значение обработки почвы и в какой степени зависит от этого активность отдельных групп микроорганизмов, участвующих в мобилизации питательных веществ для растений. Однако беспрерывная обработка почвы без периодического внесения органических удобрений снижает содержание гумуса.

Чтобы количество гумуса в почве находилось на достаточном уровне, необходимо систематически вносить органические удобрения, которые повышают общую численность в почве не только бактерий, но и актиномицетов и плесневых грибов. Этим создаются благоприятные условия для развития всех групп почвенных микроорганизмов. Повышение общей активности микрофлоры обусловливается как количеством в почве энергетических или питательных веществ, так и внесением перегноя, торфа, навоза, которые усиливают аэрацию и повышают влагоудерживающую способность почвы, делая ее более структурной. Применение минеральных удобрений на почвах, богатых органическим веществом, оказывает стимулирующее действие на микрофлору. Питательные элементы, входящие в минеральные удобрения, обеспечивают возможность расщепления органических веществ и, следовательно, вызывают интенсивное размножение микробов.

Механизм действия минеральных удобрений на микрофлору в почве многогранен. Из повышающих факторов главными являются такие:

1. Изменение физических свойств почвы, оказывающих благоприятное влияние на размножение микробов.

2. Изменение реакции (рН) почвы в сторону нейтральной или слабощелочной.

3. Минеральные удобрения в значительной степени усиливают развитие растений, что, в свою очередь, оказывает стимулирующее действие на микрофлору: более интенсивно растут корни, а, следовательно, и количество ризосферных организмов быстро увеличивается.

Различные факторы внешней среды, стимулирующие или ограничивающие развитие микроорганизмов, оказывают непосредственное влияние и на содержание гумуса в почве. К этим факторам можно отнести температуру, аэрацию, влажность почвы, кислотность и др. Оптимальными условиями для разложения органических остатков является температура 30-35° С и влажность 70-80% предельной полевой влагоемкости. Но эти условия в то же время максимально благоприятны и для минерализации гумуса. Для сохранения перегноя необходимы рациональная обработка почвы и регулярное возобновление запасов органических веществ внесением навоза, торфа, сидератов и т. п. Способствует этому также применение минеральных удобрений.

Гумус повышает количество водопрочных агрегатов почвы, что способствует хорошей водопроницаемости, экономному расходу воды, улучшает аэрацию и создает благоприятный биологический режим в структурной почве, гармонически сочетает аэробный процесс с анаэробным. Перегной служит источником энергии для микроорганизмов и одновременно делает почву более благоприятной для развития растений. Он, постепенно и медленно разлагаясь под действием почвенных микроорганизмов, является источником усвояемых питательных веществ для растений. Учитывая его многогранное влияние на почву, можно сказать, что основные свойства ее, включая плодородие, определяются гумусом.

12345678910Следующая ⇒

Химический состав почвы.

Неорганические вещества: вода – 75-90% (почвенный раствор), кальций, магний, алюминий, сера, фтор, железо (минеральное вещество). Органические вещества: углеводы, белки, жиры, воска, смолы, дубильные вещества. Органическое вещество почвы подразделяется на детрит, или мертвую органику и биоту. Механический состав почвы определяется содержанием в ней песка, ила и глины. Механический состав сильно влияет на содержание питательных веществ и температурный режим почвы. Мелко- и среднеструктурные почвы, такие как глины, суглинки более пригодны для роста растений, т.к. содержат достаточно питательных веществ и лучше удерживают воду. Присутствие камней, т.е. частиц диаметром более 2 мм, снижает способность почвы удерживать воду.

Воздушный и водный режим . Воздух заполняет поры в почве и легко вытесняется водой. Переувлажненная почва плохо аэрируется. Почвенный воздух отличается от атмосферного, с глубиной содержание углекислого газа увеличивается, чем интенсивнее протекают биологические процессы, тем больше СО2 выделяется.

Роль микроорганизмов в почвообразовании.

Почвенный воздух насыщен парами воды. Некоторые газы могут присутствовать в почве над нефтяными и газовыми месторождениями – углеводороды, над скоплениями радиоактивных элементов – радиационные эманации. Водный режим складывается из: Атмосферных осадков (О); Испарение с поверхности растительности и с поверхности почвы (И); Поверхностного стока (ПС); Десукция растениями (Д); Внутрипочвенный сток (ВПС); Грунтовый сток (ГС).

Типы почв: Тундровые глеевые почвы – маломощные, переувлажненные почвы. В них под верхним горизонтом находится зеленовато-сизый или голубовато-серый слой – глей, который образуется при постоянном переувлажнении и недостатке кислорода. В таких условиях соединения железа и марганца находятся в закисной форме (районы Крайнего Севера). Подзолистые и дерново-подзолистые почвы формируются под лесами в области избыточного увлажнения. Вода, просачиваясь сквозь почвенный слой, уносит в грунтовые воды все растворимые минеральные и органические соединения. Эти почвы бедны гумусом и малоплодородные (тайга). Мерзлотно-таежные почвы формируются в условиях резко континентального климата и многолетней мерзлоты. Черноземы – самые плодородные, богатые перегноем почвы, распространенные в лесостепной зоне, обладают зернистой структурой. Здесь выпадает столько осадков, сколько может испариться с поверхности. В условиях сухого и теплого климата в почву попадает меньшее количество растительных остатков и гумуса накапливается меньше. Здесь формируются каштановые, бурые почвы полупустынь и серо-бурые почвы . Солончаки образуются в условиях недостаточного увлажнения, где грунтовые воды сильно минерализованы. Вместе с почвенным раствором минеральные соединения подтягиваются к поверхности и при испарении влаги выпадают в осадок. Почвы обогащаются карбонатами, гипсом, идет засоление почв. При близком залегании пресных грунтовых вод образуются торфяно-болотные почвы.

Роль растений и микроорганизмов в почвообразовании

Классификация почвенных организмов: «геобионты» — животные, весь цикл которых протекает в почвенной среде (дождевые черви, первичнокрылые насекомые); «геофилы» — проводят в почве часть жизненного цикла (стадии личинки или куколки); «геоксены» — находят временное укрытие в почве (таракановые, грызуны).

Размерная классификация : Микробиота – почвенные микроорганизмы (почвенные водоросли, бактерии, грибы, простейшие); мезобиота – мелкие подвижные животные (нематоды, личинки); макробиота – крупные насекомые, роющие позвоночные (кроты, суслики, крысы). Растения: высшие растения – генераторы органического вещества; концентраторы химических элементов, азот. Растения своей жизнедеятельность обуславливают процесс миграции элементов. Регулировка стока, противодействие эрозии. Животные организмы: почвенные землерои многократно перерывают почву, способствуют перемешиванию, лучшей аэрации и быстрому развитию почвообразовательного процесса, обогащают органическую массу почвы продуктами своей жизнедеятельности. Микроорганизмы имеют важное значение для формирования почвы. Благодаря их деятельности происходит разложение химических остатков и синтез соединений, усвояемых растениями. Актиномицеты – одноклеточные микроорганизмы, которые обладают способностью ветвиться, их деятельность которых направлена на разложение стойких органических веществ. Грибы – низшие плесневые (мукор) – участвуют в разложении клетчатки, органических веществ. Одноклеточные водоросли, лишайники, простейшие, нитробактерии, азотфиксирующие бактерии (клубеньковые).

12345678910Следующая ⇒

Похожая информация:

Поиск на сайте:

Существенными факторами в почвообразовании являются животные и растительные организмы - особые компоненты почвы. Их роль заключается в огромной геохимической работе. Органические соединения почвы формируются в результате жизнедеятельности растений, животных и микроорганизмов В системе «почва-растение» происходит постоянный биологический круговорот веществ, в котором растения играют активную роль. Начало почвообразования всегда связано с поселением на минеральном субстрате организмов. В почве обитают представители всех четырех царств живой природы - растения, животные, грибы, прокариоты (микроорганизмы - бактерии, актиномицеты и сине-зеленые водоросли). Микроорганизмы готовят биогенный мелкозем - субстрат для поселения высших растений - основных продуцентов органического вещества.

Основная роль при этом принадлежит растительности. Зеленые растения являются практически единственными создателями первичных органических веществ. Поглощая из атмосферы углекислый газ, из почвы - воду и минеральные вещества, используя энергию солнечного света, они создают сложные органические соединения, богатые энергией.

Фитомасса высших растений сильно зависит от типа растительности и конкретных условий ее формирования. Биомасса и годичная продуктивность древесной растительности увеличиваются по мере продвижения от высоких широт к более низким, а биомасса и продуктивность травянистой растительности лугов и степей заметно снижаются, начиная от лесостепи и далее к сухим степям и полупустыням.

В гумусовом слое Земли сосредоточено такое же количество энергии, как и во всей биомассе суши, причем аккумулируется энергия, ассимилированная в растениях благодаря фотосинтезу. Одна из наиболее продуктивных составляющих биомассы - опад. В хвойном лесу опад в силу специфики его химического состава очень медленно разлагается. Лесной опад вместе с грубым гумусом образует подстилку типа мор, которая минерализуется преимущественно грибами. Процесс минерализации ежегодного опада в основном совершается в течение годового цикла. В смешанных и широколиственных лесах в гумусообразовании большее участие принимает опад травянистой растительности. Освобождающиеся при минерализации опада основания нейтрализуют кислые продукты почвообразования; синтезируется более насыщенный кальцием гуматно-фульватный гумус типа модер. Формируются серые лесные или бурые лесные почвы с менее кислой реакцией, чем у подзолистых почв и более высоким уровнем плодородия.

Под пологом травянистой степной или луговой растительности основной источник образования гумуса - масса отмирающих корней. Гидротермические условия степной зоны способствуют быстрому разложению органических остатков.

Наибольшее количество органических веществ дают лесные сообщества, особенно в условиях влажных тропиков. Меньше органического вещества создается в условиях тундры, пустынь, болотистой местности и т.п. Растительность оказывает влияние на структуру и характер органических веществ почвы, ее влажность. Степень и характер влияния растительности как почвообразующего фактора зависит от:

  • видового состава растений,
  • густоты их стояния,
  • химизма и многих других факторов

Основная функция животных организмов в почве - преобразование органических веществ. В почвообразовании принимают участие как почвенные, так и наземные животные. В почвенной среде животные представлены главным образом беспозвоночными и простейшими. Некоторое значение имеют также позвоночные (например, кроты и др.), постоянно живущие в почве. Почвенные животные делятся на две группы:

  • биофагов, питающихся живыми организмами или тканями животных организмов,
  • сапрофагов, использующих в пищу органическое вещество.

Главную массу почвенных животных составляют сапрофаги (нематоды, дождевые черви и др.). На 1 га почвы приходится более 1 млн. простейших, на 1 м - десятки червей, нематод и других сапрофагов. Огромная масса сапрофагов, поедая мертвые растительные остатки, выбрасывает в почву экскременты. Согласно подсчетам Ч.

Роль микроорганизмов в почвообразовании

Дарвина, почвенная масса в течение нескольких лет полностью проходит через пищеварительный тракт червей. Сапрофаги влияют на формирование почвенного профиля, содержание гумуса, структуру почвы.

Самыми многочисленными представителями наземного животного мира, участвующими в почвообразовании, являются мелкие грызуны (мыши-полевки и др.).

Растительные и животные остатки, попадая в почву, подвергаются сложным изменениям. Определенная их часть распадается до углекислоты, воды и простых солей (процесс минерализации), другие переходят в новые сложные органические вещества самой почвы.

Микроорганизмы (бактерии, актиномицеты, грибы, водоросли, простейшие). В поверхностном горизонте суммарная масса микроорганизмов - несколько тонн на 1 га, причем почвенные микроорганизмы составляют от 0,01 до 0,1 % от всей биомассы суши. Микроорганизмы предпочитают селиться на обогащенных питательными веществами экскрементах животных. Они участвуют в гумусообразовании и разлагают органические вещества до простых конечных продуктов:

  • газов (диоксид углерода, аммиак и др.),
  • воды,
  • простых минеральных соединений.

Главная масса микроорганизмов сосредоточена в верхних 20 см почвы. Микроорганизмы (например, клубеньковые бактерии бобовых растений) фиксируют азот на 2/з из воздуха, накапливая его в почвах и поддерживая азотное питание растений без внесения минеральных удобрений. Роль биологического фактора в почвообразовании наиболее ярко проявляется в формировании гумуса.

Социальные кнопки для Joomla

Микроорганизмы и микробиологические процессы играют важную роль в плодородии почвы и питании растений.

Почва создает условия для развития микрофлоры, которая, в свою очередь, оказывает специфическое влияние на почву. В каждом виде почв, обладающем конкретными физико-химическими свойствами, развиваются определенное количество и группы микроорганизмов и устанавливается биологическое равновесие, характерное для данных условий и сезона.

Изменение водного, воздушного и питательного режимов почвы сказывается существенным образом на микрофлоре: меняются количество отдельных групп микроорганизмов, т. е. соотношение между ними, а также динамика и интенсивность микробиологических процессов. Поэтому изучение биологии почвы является непременным условием при применении различных агротехнических мероприятий. Для поддержания и повышения почвенного плодородия и эффективного использования вносимых удобрений необходимо также исследование различных аспектов течения микробиологических процессов.

В условиях интенсивного земледелия в почву вносится значительное количество минеральных удобрений, которые довольно существенно влияют на соотношение питательных веществ в почвенном растворе и в естественных условиях являются причиной нарушения установленного биологического равновесия. В результате этих изменений усиливаются процессы минерализации и в почву поступает больше доступных питательных веществ, которые могут быть биологическим путем переведены в усвояемые формы. Кроме того, возрастают газообразные потери азота. Все это сказывается на почвенном плодородии и условиях питания растений.

Почва - сложный субстрат и точно определить факторы, которые регулируют микробиологические процессы в ней, довольно, трудно.

Роль микроорганизмов в формировании почвы и ее плодородия

Количественные и качественные изменения микрофлоры связаны с питательным режимом почвы и с условиями питания растений. Определение микробиологических процессов, оказывающих существенное влияние на содержание отдельных питательных элементов в почве, является важной задачей, решение которой обусловливает повышение почвенного плодородия и эффективности удобрения. Органические остатки (в агроэкосистемах это, в основном, пожнивные остатки) служат субстратом и главным источником энергии для почвенной микрофлоры. От их количества и химического состава зависит характер и интенсивность микробиологических процессов в почве.

Большую роль играют микроорганизмы в трансформации азота в почве. Аммонифицирующие бактерии, многие актиномицеты, микроскопические грибы и другие микроорганизмы обусловливают минерализацию органического вещества в почве и высвобождение доступного растениям аммонийного азота. Нитрифицирующие бактерии превращают аммонийный азот в нитриты и нитраты. Значительна по составу и количеству микрофлора, использующая минеральный азот и превращающая его в органические формы (процесс иммобилизации). Денитрифицирующие бактерии предопределяют невозвратимые потери газообразного азота. Такие виды, как Azotobacter (az. chroococcum) или Clostridium (Q. pasteurianum) , биологически фиксируют поступающий в почву азот атмосферы. Следовательно, трансформация азота самым тесным образом связана с почвенной микрофлорой, от деятельности которой зависит азотный режим почвы, т. е. количество и качество почвенного азота.

Микроорганизмы осуществляют круговорот веществ в почве, влияя на минерализацию органических остатков и превращая нерастворимые формы в доступные для растений соединения. При этих процессах происходит активное выделение метаболитов - продуктов, участвующих в синтезе гумуса. Микроорганизмы содействуют накоплению и разложению гумуса. Количество и качество питательных веществ в почве зависит от интенсивности микробиологических процессов аммонификации и нитрификации, от целлюлозоразлагающей и ферментативной активности и т. д.

Эффективность азотных удобрений бывает невелика: в почве используется до 50% внесенного с удобрениями азота. Большую роль здесь играет также микробиологическая деятельность. При внесении удобрений количество усвояемого азота в почве в большой степени определяется интенсивностью денитрификации, размером и продолжительностью биологической иммобилизации, интенсивностью процессов аммонификации и нитрификации и др. Так, при интенсивном использовании минеральных азотных удобрений резко возрастают денитрификация и биологическая иммобилизация азота. В результате этого снижается коэффициент использования минеральных азотных удобрений, что может привести к загрязнению атмосферы.

Большое влияние на азотный режим почв оказывают азотфиксирующие бактерии. Свободноживующие азотфиксаторы, которые в почвах довольно широко распространены, вместе с симбиотическими клубеньковыми бактериями усваивают атмосферный азот и играют важную роль в поддержании азотного режима почв. Клубеньковые бактерии в значительной мере обеспечивают азотное питание бобовых культур.

Минерализация органических фосфорных соединений, превращения фосфатов алюминия, железа, трикальциевых фосфатов в почве осуществляются микроорганизмами. В трансформации серы, железа и других элементов также принимают участие микроорганизмы.

Интенсивное возделывание культур связано с внесением высоких доз минеральных удобрений. Изменения, происходящие при этом в почве, отражаются в значительной степени на микрофлоре. Обработка гербицидами - веществами, чужеродными для почвы, - влияет на количество и состав микрофлоры. В то же время микрофлора участвует в детоксикации пестицидов в почве и в ее очистке от загрязнения некоторыми химикатами.

В почве практически нет процесса, в котором микрофлора не принимала бы активного участия. Антропогенное влияние на почву особенно возрастает в интенсивном земледелии, когда изменяются питательный, воздушный и водный режимы. Необходимость изучения этих изменений связана с вопросами сохранения и повышения почвенного плодородия. Микрофлору можно использовать в качестве показателя для определения направлений течения различных процессов в почве.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Вконтакте

Существенными факторами в почвообразовании являются животные и растительные организмы - особые компоненты почвы. Их роль заключается в огромной геохимической работе. Органические соединения почвы формируются в результате жизнедеятельности растений, животных и микроорганизмов В системе «почва-растение» происходит постоянный биологический круговорот веществ, в котором растения играют активную роль. Начало почвообразования всегда связано с поселением на минеральном субстрате организмов. В почве обитают представители всех четырех царств живой природы - растения, животные, грибы, прокариоты (микроорганизмы - бактерии, актиномицеты и сине-зеленые водоросли). Микроорганизмы готовят биогенный мелкозем - субстрат для поселения высших растений - основных продуцентов органического вещества.

Основная роль при этом принадлежит растительности . Зеленые растения являются практически единственными создателями первичных органических веществ. Поглощая из атмосферы углекислый газ, из почвы - воду и минеральные вещества, используя энергию солнечного света, они создают сложные органические соединения, богатые энергией.

Фитомасса высших растений сильно зависит от типа растительности и конкретных условий ее формирования. Биомасса и годичная продуктивность древесной растительности увеличиваются по мере продвижения от высоких широт к более низким, а биомасса и продуктивность травянистой растительности лугов и степей заметно снижаются, начиная от лесостепи и далее к сухим степям и полупустыням.

В гумусовом слое Земли сосредоточено такое же количество энергии, как и во всей биомассе суши, причем аккумулируется энергия, ассимилированная в растениях благодаря фотосинтезу. Одна из наиболее продуктивных составляющих биомассы - опад . В хвойном лесу опад в силу специфики его химического состава очень медленно разлагается. Лесной опад вместе с грубым гумусом образует подстилку типа мор, которая минерализуется преимущественно грибами. Процесс минерализации ежегодного опада в основном совершается в течение годового цикла. В смешанных и широколиственных лесах в гумусообразовании большее участие принимает опад травянистой растительности. Освобождающиеся при минерализации опада основания нейтрализуют кислые продукты почвообразования; синтезируется более насыщенный кальцием гуматно-фульватный гумус типа модер. Формируются серые лесные или бурые лесные почвы с менее кислой реакцией, чем у подзолистых почв и более высоким уровнем плодородия.

Под пологом травянистой степной или луговой растительности основной источник образования гумуса - масса отмирающих корней . Гидротермические условия степной зоны способствуют быстрому разложению органических остатков.

Наибольшее количество органических веществ дают лесные сообщества, особенно в условиях влажных тропиков. Меньше органического вещества создается в условиях тундры, пустынь, болотистой местности и т.п. Растительность оказывает влияние на структуру и характер органических веществ почвы, ее влажность. Степень и характер влияния растительности как почвообразующего фактора зависит от:

  • видового состава растений,
  • густоты их стояния,
  • химизма и многих других факторов

Основная функция животных организмов в почве - преобразование органических веществ. В почвообразовании принимают участие как почвенные, так и наземные животные. В почвенной среде животные представлены главным образом беспозвоночными и простейшими. Некоторое значение имеют также позвоночные (например, кроты и др.), постоянно живущие в почве. Почвенные животные делятся на две группы:

  • биофагов, питающихся живыми организмами или тканями животных организмов,
  • сапрофагов, использующих в пищу органическое вещество.

Главную массу почвенных животных составляют сапрофаги (нематоды, дождевые черви и др.). На 1 га почвы приходится более 1 млн. простейших, на 1 м - десятки червей, нематод и других сапрофагов. Огромная масса сапрофагов, поедая мертвые растительные остатки, выбрасывает в почву экскременты. Согласно подсчетам Ч. Дарвина, почвенная масса в течение нескольких лет полностью проходит через пищеварительный тракт червей. Сапрофаги влияют на формирование почвенного профиля, содержание гумуса, структуру почвы.

Самыми многочисленными представителями наземного животного мира, участвующими в почвообразовании, являются мелкие грызуны (мыши-полевки и др.).

Растительные и животные остатки, попадая в почву, подвергаются сложным изменениям. Определенная их часть распадается до углекислоты, воды и простых солей (процесс минерализации), другие переходят в новые сложные органические вещества самой почвы.

Микроорганизмы (бактерии, актиномицеты, грибы, водоросли, простейшие). В поверхностном горизонте суммарная масса микроорганизмов - несколько тонн на 1 га, причем почвенные микроорганизмы составляют от 0,01 до 0,1 % от всей биомассы суши. Микроорганизмы предпочитают селиться на обогащенных питательными веществами экскрементах животных. Они участвуют в гумусообразовании и разлагают органические вещества до простых конечных продуктов:

  • газов (диоксид углерода, аммиак и др.),
  • воды,
  • простых минеральных соединений.

Главная масса микроорганизмов сосредоточена в верхних 20 см почвы. Микроорганизмы (например, клубеньковые бактерии бобовых растений) фиксируют азот на 2 /з из воздуха, накапливая его в почвах и поддерживая азотное питание растений без внесения минеральных удобрений. Роль биологического фактора в почвообразовании наиболее ярко проявляется в формировании гумуса.